L(s) = 1 | + (−2.17 − 0.5i)5-s − 4.35i·7-s + 4.35·11-s + 4i·17-s + 6·19-s − 2i·23-s + (4.50 + 2.17i)25-s − 7·31-s + (−2.17 + 9.50i)35-s − 8.71i·37-s + 8.71·41-s − 8.71i·43-s − 2i·47-s − 12.0·49-s + 3i·53-s + ⋯ |
L(s) = 1 | + (−0.974 − 0.223i)5-s − 1.64i·7-s + 1.31·11-s + 0.970i·17-s + 1.37·19-s − 0.417i·23-s + (0.900 + 0.435i)25-s − 1.25·31-s + (−0.368 + 1.60i)35-s − 1.43i·37-s + 1.36·41-s − 1.32i·43-s − 0.291i·47-s − 1.71·49-s + 0.412i·53-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.223+0.974i)Λ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)(−0.223+0.974i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.223+0.974i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1729,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), −0.223+0.974i)
|
Particular Values
L(1) |
≈ |
1.379083045 |
L(21) |
≈ |
1.379083045 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2.17+0.5i)T |
good | 7 | 1+4.35iT−7T2 |
| 11 | 1−4.35T+11T2 |
| 13 | 1−13T2 |
| 17 | 1−4iT−17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+2iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1+7T+31T2 |
| 37 | 1+8.71iT−37T2 |
| 41 | 1−8.71T+41T2 |
| 43 | 1+8.71iT−43T2 |
| 47 | 1+2iT−47T2 |
| 53 | 1−3iT−53T2 |
| 59 | 1+8.71T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+8.71iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+4.35iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+5iT−83T2 |
| 89 | 1+8.71T+89T2 |
| 97 | 1+4.35iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.930483787376776350702799234112, −7.84449051851657256034969005688, −7.38195793091336561977050901603, −6.76210546775078375208825243681, −5.70442166840490137390538396995, −4.49990142408601185397172809092, −3.91419685220581800678477012977, −3.40413890904809460604931686374, −1.54061628817866170653356116432, −0.55894289828552607051445944650,
1.29185300653474010907580010010, 2.72344532496388764028809155494, 3.37656389073463306410437775450, 4.46896452847844228530078010632, 5.33965992042105433312300028155, 6.14760465331538496449936466691, 7.02623194236618650724285487525, 7.75150713100437454696101103661, 8.592433273759511904899004132625, 9.323522482786687459505638901685