L(s) = 1 | + (−2.17 − 0.5i)5-s − 4.35i·7-s + 4.35·11-s + 4i·17-s + 6·19-s − 2i·23-s + (4.50 + 2.17i)25-s − 7·31-s + (−2.17 + 9.50i)35-s − 8.71i·37-s + 8.71·41-s − 8.71i·43-s − 2i·47-s − 12.0·49-s + 3i·53-s + ⋯ |
L(s) = 1 | + (−0.974 − 0.223i)5-s − 1.64i·7-s + 1.31·11-s + 0.970i·17-s + 1.37·19-s − 0.417i·23-s + (0.900 + 0.435i)25-s − 1.25·31-s + (−0.368 + 1.60i)35-s − 1.43i·37-s + 1.36·41-s − 1.32i·43-s − 0.291i·47-s − 1.71·49-s + 0.412i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.223 + 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.223 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.379083045\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.379083045\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.17 + 0.5i)T \) |
good | 7 | \( 1 + 4.35iT - 7T^{2} \) |
| 11 | \( 1 - 4.35T + 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + 2iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 7T + 31T^{2} \) |
| 37 | \( 1 + 8.71iT - 37T^{2} \) |
| 41 | \( 1 - 8.71T + 41T^{2} \) |
| 43 | \( 1 + 8.71iT - 43T^{2} \) |
| 47 | \( 1 + 2iT - 47T^{2} \) |
| 53 | \( 1 - 3iT - 53T^{2} \) |
| 59 | \( 1 + 8.71T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 + 8.71iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 4.35iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 5iT - 83T^{2} \) |
| 89 | \( 1 + 8.71T + 89T^{2} \) |
| 97 | \( 1 + 4.35iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.930483787376776350702799234112, −7.84449051851657256034969005688, −7.38195793091336561977050901603, −6.76210546775078375208825243681, −5.70442166840490137390538396995, −4.49990142408601185397172809092, −3.91419685220581800678477012977, −3.40413890904809460604931686374, −1.54061628817866170653356116432, −0.55894289828552607051445944650,
1.29185300653474010907580010010, 2.72344532496388764028809155494, 3.37656389073463306410437775450, 4.46896452847844228530078010632, 5.33965992042105433312300028155, 6.14760465331538496449936466691, 7.02623194236618650724285487525, 7.75150713100437454696101103661, 8.592433273759511904899004132625, 9.323522482786687459505638901685