| L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00i·10-s + (0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (−0.707 + 0.707i)17-s + (−0.707 + 0.707i)20-s + 1.00·22-s + (−0.707 − 0.707i)23-s + 1.00i·25-s + (0.707 + 0.707i)26-s + (0.707 + 0.707i)29-s + ⋯ |
| L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00i·10-s + (0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (−0.707 + 0.707i)17-s + (−0.707 + 0.707i)20-s + 1.00·22-s + (−0.707 − 0.707i)23-s + 1.00i·25-s + (0.707 + 0.707i)26-s + (0.707 + 0.707i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.946192510\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.946192510\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 29 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 1.41T + T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (1 + i)T + iT^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.178531292875268430784010285505, −8.651423611096467525075302184248, −7.84927604571205732480317467977, −6.82239362065161888876306131159, −6.18977513684971683335564709606, −5.92128939355772233324332526796, −4.67505154122390280143155279133, −3.78030257639767920730206854393, −3.02859785345208158434072111812, −1.84698139170589525640033417564,
1.24981379391915894066428144000, 2.05799946024511865788737037551, 3.22748587578898096533824690291, 4.31460274816729762327262066864, 4.80200654485976270368628064404, 5.87122011656231905380225966440, 6.34395911253079863992755588639, 7.33675596591043904674522569274, 8.679667185289797457946110845680, 9.124925046060845358892404451194