Properties

Label 2-2160-240.227-c0-0-1
Degree $2$
Conductor $2160$
Sign $-0.160 - 0.987i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00i·10-s + (0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (−0.707 + 0.707i)17-s + (−0.707 + 0.707i)20-s + 1.00·22-s + (−0.707 − 0.707i)23-s + 1.00i·25-s + (0.707 + 0.707i)26-s + (0.707 + 0.707i)29-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00i·10-s + (0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (−0.707 + 0.707i)17-s + (−0.707 + 0.707i)20-s + 1.00·22-s + (−0.707 − 0.707i)23-s + 1.00i·25-s + (0.707 + 0.707i)26-s + (0.707 + 0.707i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-0.160 - 0.987i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (1187, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :0),\ -0.160 - 0.987i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.946192510\)
\(L(\frac12)\) \(\approx\) \(1.946192510\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 0.707i)T \)
3 \( 1 \)
5 \( 1 + (-0.707 - 0.707i)T \)
good7 \( 1 + iT^{2} \)
11 \( 1 + (-0.707 + 0.707i)T - iT^{2} \)
13 \( 1 - T + T^{2} \)
17 \( 1 + (0.707 - 0.707i)T - iT^{2} \)
19 \( 1 + iT^{2} \)
23 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
29 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
31 \( 1 + iT - T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + 1.41T + T^{2} \)
43 \( 1 - T + T^{2} \)
47 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
53 \( 1 + 1.41T + T^{2} \)
59 \( 1 + iT^{2} \)
61 \( 1 + (1 + i)T + iT^{2} \)
67 \( 1 + 2T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 - T + T^{2} \)
83 \( 1 + 1.41T + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (-1 - i)T + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.178531292875268430784010285505, −8.651423611096467525075302184248, −7.84927604571205732480317467977, −6.82239362065161888876306131159, −6.18977513684971683335564709606, −5.92128939355772233324332526796, −4.67505154122390280143155279133, −3.78030257639767920730206854393, −3.02859785345208158434072111812, −1.84698139170589525640033417564, 1.24981379391915894066428144000, 2.05799946024511865788737037551, 3.22748587578898096533824690291, 4.31460274816729762327262066864, 4.80200654485976270368628064404, 5.87122011656231905380225966440, 6.34395911253079863992755588639, 7.33675596591043904674522569274, 8.679667185289797457946110845680, 9.124925046060845358892404451194

Graph of the $Z$-function along the critical line