| L(s)  = 1 | − i·2-s     − 4-s   + (0.707 − 0.707i)5-s     + 1.41·7-s   + i·8-s     + (−0.707 − 0.707i)10-s   + (−0.707 + 0.707i)11-s     + (−0.707 − 0.707i)13-s   − 1.41i·14-s     + 16-s   − 17-s     + (1 − i)19-s   + (−0.707 + 0.707i)20-s     + (0.707 + 0.707i)22-s   − i·23-s    + ⋯ | 
| L(s)  = 1 | − i·2-s     − 4-s   + (0.707 − 0.707i)5-s     + 1.41·7-s   + i·8-s     + (−0.707 − 0.707i)10-s   + (−0.707 + 0.707i)11-s     + (−0.707 − 0.707i)13-s   − 1.41i·14-s     + 16-s   − 17-s     + (1 − i)19-s   + (−0.707 + 0.707i)20-s     + (0.707 + 0.707i)22-s   − i·23-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.292145568\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.292145568\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + iT \) | 
|  | 3 | \( 1 \) | 
|  | 5 | \( 1 + (-0.707 + 0.707i)T \) | 
| good | 7 | \( 1 - 1.41T + T^{2} \) | 
|  | 11 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) | 
|  | 13 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) | 
|  | 17 | \( 1 + T + T^{2} \) | 
|  | 19 | \( 1 + (-1 + i)T - iT^{2} \) | 
|  | 23 | \( 1 + iT - T^{2} \) | 
|  | 29 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) | 
|  | 31 | \( 1 - T + T^{2} \) | 
|  | 37 | \( 1 - iT^{2} \) | 
|  | 41 | \( 1 + T^{2} \) | 
|  | 43 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) | 
|  | 47 | \( 1 - T + T^{2} \) | 
|  | 53 | \( 1 + (1 + i)T + iT^{2} \) | 
|  | 59 | \( 1 - iT^{2} \) | 
|  | 61 | \( 1 - iT^{2} \) | 
|  | 67 | \( 1 + iT^{2} \) | 
|  | 71 | \( 1 - 1.41T + T^{2} \) | 
|  | 73 | \( 1 + T^{2} \) | 
|  | 79 | \( 1 - T + T^{2} \) | 
|  | 83 | \( 1 - iT^{2} \) | 
|  | 89 | \( 1 + 1.41T + T^{2} \) | 
|  | 97 | \( 1 - 1.41iT - T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.154680313907273444776197842452, −8.323644875006776803554879314842, −7.88659554238131427615156143458, −6.68243655666069059793955408899, −5.21723281758893574486414839805, −4.99390085124004374958723872221, −4.40886999868329333792093800180, −2.75183510207255080940771329695, −2.16327285279202566813070696185, −1.01710712023317427930031504358, 
1.57335299944060337354564257844, 2.78365700511872524726253274281, 4.05802977341906386499302823398, 4.99282014844883649316989246006, 5.55978910583392285385163396250, 6.37868536208954240287024296718, 7.23872271225403484937018266483, 7.87386351484362660668228086988, 8.500218943081132870087816643589, 9.442239537999100904886356760569
