L(s) = 1 | + (4.36 + 2.44i)5-s − 2.79i·7-s + 18.1i·11-s − 23.0i·13-s − 5.72·17-s − 23.1·19-s + 0.271·23-s + (13.0 + 21.2i)25-s + 39.7i·29-s − 47.3·31-s + (6.82 − 12.2i)35-s − 34.8i·37-s + 13.2i·41-s + 46.7i·43-s − 40.9·47-s + ⋯ |
L(s) = 1 | + (0.872 + 0.488i)5-s − 0.399i·7-s + 1.64i·11-s − 1.77i·13-s − 0.336·17-s − 1.22·19-s + 0.0118·23-s + (0.523 + 0.851i)25-s + 1.37i·29-s − 1.52·31-s + (0.194 − 0.348i)35-s − 0.942i·37-s + 0.323i·41-s + 1.08i·43-s − 0.870·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.872−0.488i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(−0.872−0.488i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.872−0.488i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), −0.872−0.488i)
|
Particular Values
L(23) |
≈ |
0.8496788225 |
L(21) |
≈ |
0.8496788225 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−4.36−2.44i)T |
good | 7 | 1+2.79iT−49T2 |
| 11 | 1−18.1iT−121T2 |
| 13 | 1+23.0iT−169T2 |
| 17 | 1+5.72T+289T2 |
| 19 | 1+23.1T+361T2 |
| 23 | 1−0.271T+529T2 |
| 29 | 1−39.7iT−841T2 |
| 31 | 1+47.3T+961T2 |
| 37 | 1+34.8iT−1.36e3T2 |
| 41 | 1−13.2iT−1.68e3T2 |
| 43 | 1−46.7iT−1.84e3T2 |
| 47 | 1+40.9T+2.20e3T2 |
| 53 | 1+91.3T+2.80e3T2 |
| 59 | 1−78.8iT−3.48e3T2 |
| 61 | 1−31.1T+3.72e3T2 |
| 67 | 1−6.91iT−4.48e3T2 |
| 71 | 1+81.5iT−5.04e3T2 |
| 73 | 1−106.iT−5.32e3T2 |
| 79 | 1+63.5T+6.24e3T2 |
| 83 | 1+0.284T+6.88e3T2 |
| 89 | 1−28.5iT−7.92e3T2 |
| 97 | 1+92.9iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.387693470184420087427558469301, −8.458272995796831702604062029001, −7.45469817745950880549964314735, −7.01166306414841305364930543252, −6.07213391360948891186447392939, −5.28446453240214151900805790271, −4.46434148931892996586207064854, −3.33450483032914835040803969372, −2.37766732125980999550645154237, −1.47463515624593381083772208146,
0.18879155904879151652914180847, 1.65543679345467919426987487368, 2.37979568795128069548292038516, 3.66835289118221716613950145951, 4.55443008358671759128392437993, 5.49380056410662025556531619293, 6.25463217206279760292280676176, 6.68297579499378639620142123779, 8.036487796733396788376215275443, 8.808422448399783188350318927525