L(s) = 1 | + (−2.86 − 4.09i)5-s − 7.15i·7-s + 5.06i·11-s + 3.12i·13-s + 8.72·17-s + 20.1·19-s + 14.7·23-s + (−8.59 + 23.4i)25-s + 39.7i·29-s + 39.3·31-s + (−29.3 + 20.4i)35-s + 34.8i·37-s + 13.2i·41-s − 66.6i·43-s + 16.9·47-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.819i)5-s − 1.02i·7-s + 0.460i·11-s + 0.240i·13-s + 0.513·17-s + 1.06·19-s + 0.640·23-s + (−0.343 + 0.939i)25-s + 1.37i·29-s + 1.27·31-s + (−0.837 + 0.585i)35-s + 0.942i·37-s + 0.323i·41-s − 1.54i·43-s + 0.359·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.572+0.819i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(0.572+0.819i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.572+0.819i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), 0.572+0.819i)
|
Particular Values
L(23) |
≈ |
1.882398387 |
L(21) |
≈ |
1.882398387 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2.86+4.09i)T |
good | 7 | 1+7.15iT−49T2 |
| 11 | 1−5.06iT−121T2 |
| 13 | 1−3.12iT−169T2 |
| 17 | 1−8.72T+289T2 |
| 19 | 1−20.1T+361T2 |
| 23 | 1−14.7T+529T2 |
| 29 | 1−39.7iT−841T2 |
| 31 | 1−39.3T+961T2 |
| 37 | 1−34.8iT−1.36e3T2 |
| 41 | 1−13.2iT−1.68e3T2 |
| 43 | 1+66.6iT−1.84e3T2 |
| 47 | 1−16.9T+2.20e3T2 |
| 53 | 1+4.62T+2.80e3T2 |
| 59 | 1+25.7iT−3.48e3T2 |
| 61 | 1+12.1T+3.72e3T2 |
| 67 | 1+106.iT−4.48e3T2 |
| 71 | 1−101.iT−5.04e3T2 |
| 73 | 1−23.2iT−5.32e3T2 |
| 79 | 1−66.5T+6.24e3T2 |
| 83 | 1−144.T+6.88e3T2 |
| 89 | 1+154.iT−7.92e3T2 |
| 97 | 1+175.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.759552643896691667716435294393, −7.921026113320900113490307029415, −7.31247499164737837329738701604, −6.64292660081511594897101542535, −5.33266981132248607014922667984, −4.77196822507263347157883499006, −3.90534232403851293415952699847, −3.09713444608772066687689511379, −1.48737997847937688239799373727, −0.68546635599078927958049217665,
0.835810586421629522373645965072, 2.45767643306983300593775718562, 3.04831472959587823557731024274, 3.99880228810112708617311903516, 5.12956633168430795171826042771, 5.92154072264997632557879587901, 6.59284931437013747931149319132, 7.66678796860162947366493484387, 8.043237254524327591711167547383, 9.041331233647584744430062978265