L(s) = 1 | + 5i·5-s − 20.7i·7-s − 36.3·11-s − 47·13-s − 21i·17-s + 62.3i·19-s − 36.3·23-s − 25·25-s + 123i·29-s − 25.9i·31-s + 103.·35-s − 178·37-s + 342i·41-s − 233. i·43-s − 306.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 1.12i·7-s − 0.996·11-s − 1.00·13-s − 0.299i·17-s + 0.752i·19-s − 0.329·23-s − 0.200·25-s + 0.787i·29-s − 0.150i·31-s + 0.501·35-s − 0.790·37-s + 1.30i·41-s − 0.829i·43-s − 0.951·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.339217650\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.339217650\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 + 20.7iT - 343T^{2} \) |
| 11 | \( 1 + 36.3T + 1.33e3T^{2} \) |
| 13 | \( 1 + 47T + 2.19e3T^{2} \) |
| 17 | \( 1 + 21iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 62.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 36.3T + 1.21e4T^{2} \) |
| 29 | \( 1 - 123iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 25.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 178T + 5.06e4T^{2} \) |
| 41 | \( 1 - 342iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 233. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 306.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 414iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 446.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 542T + 2.26e5T^{2} \) |
| 67 | \( 1 + 155. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 852.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 232T + 3.89e5T^{2} \) |
| 79 | \( 1 + 348. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 405.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.35e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.04e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.597922346956409181559980550539, −7.74484962312649799957413912575, −7.28941353585559926405029027930, −6.53965456238652224099596997339, −5.45844759429513828856444396760, −4.72945114364608256977946502882, −3.75987979241083916027447460738, −2.90289645067622904603312060405, −1.86302012185652922443439932310, −0.51967770900283116431401139961,
0.48513258045006321216966010445, 2.08315705161676714305022615568, 2.59389055792648094388307975367, 3.81583922044414399245772684419, 5.09259096925204621031731919691, 5.24081903078408761523283430502, 6.31469216724134642173155378116, 7.22355736709647078970420138073, 8.124927343483465054019370282503, 8.611557663943615536378818867728