L(s) = 1 | + 5i·5-s − 20.7i·7-s − 36.3·11-s − 47·13-s − 21i·17-s + 62.3i·19-s − 36.3·23-s − 25·25-s + 123i·29-s − 25.9i·31-s + 103.·35-s − 178·37-s + 342i·41-s − 233. i·43-s − 306.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 1.12i·7-s − 0.996·11-s − 1.00·13-s − 0.299i·17-s + 0.752i·19-s − 0.329·23-s − 0.200·25-s + 0.787i·29-s − 0.150i·31-s + 0.501·35-s − 0.790·37-s + 1.30i·41-s − 0.829i·43-s − 0.951·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2160s/2ΓC(s+3/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
1
|
Analytic conductor: |
127.444 |
Root analytic conductor: |
11.2891 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :3/2), 1)
|
Particular Values
L(2) |
≈ |
1.339217650 |
L(21) |
≈ |
1.339217650 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5iT |
good | 7 | 1+20.7iT−343T2 |
| 11 | 1+36.3T+1.33e3T2 |
| 13 | 1+47T+2.19e3T2 |
| 17 | 1+21iT−4.91e3T2 |
| 19 | 1−62.3iT−6.85e3T2 |
| 23 | 1+36.3T+1.21e4T2 |
| 29 | 1−123iT−2.43e4T2 |
| 31 | 1+25.9iT−2.97e4T2 |
| 37 | 1+178T+5.06e4T2 |
| 41 | 1−342iT−6.89e4T2 |
| 43 | 1+233.iT−7.95e4T2 |
| 47 | 1+306.T+1.03e5T2 |
| 53 | 1−414iT−1.48e5T2 |
| 59 | 1−446.T+2.05e5T2 |
| 61 | 1−542T+2.26e5T2 |
| 67 | 1+155.iT−3.00e5T2 |
| 71 | 1−852.T+3.57e5T2 |
| 73 | 1−232T+3.89e5T2 |
| 79 | 1+348.iT−4.93e5T2 |
| 83 | 1−405.T+5.71e5T2 |
| 89 | 1+1.35e3iT−7.04e5T2 |
| 97 | 1+1.04e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.597922346956409181559980550539, −7.74484962312649799957413912575, −7.28941353585559926405029027930, −6.53965456238652224099596997339, −5.45844759429513828856444396760, −4.72945114364608256977946502882, −3.75987979241083916027447460738, −2.90289645067622904603312060405, −1.86302012185652922443439932310, −0.51967770900283116431401139961,
0.48513258045006321216966010445, 2.08315705161676714305022615568, 2.59389055792648094388307975367, 3.81583922044414399245772684419, 5.09259096925204621031731919691, 5.24081903078408761523283430502, 6.31469216724134642173155378116, 7.22355736709647078970420138073, 8.124927343483465054019370282503, 8.611557663943615536378818867728