L(s) = 1 | + 5i·5-s + 20.7i·7-s + 36.3·11-s − 47·13-s − 21i·17-s − 62.3i·19-s + 36.3·23-s − 25·25-s + 123i·29-s + 25.9i·31-s − 103.·35-s − 178·37-s + 342i·41-s + 233. i·43-s + 306.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s + 1.12i·7-s + 0.996·11-s − 1.00·13-s − 0.299i·17-s − 0.752i·19-s + 0.329·23-s − 0.200·25-s + 0.787i·29-s + 0.150i·31-s − 0.501·35-s − 0.790·37-s + 1.30i·41-s + 0.829i·43-s + 0.951·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2160s/2ΓC(s+3/2)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−1
|
Analytic conductor: |
127.444 |
Root analytic conductor: |
11.2891 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :3/2), −1)
|
Particular Values
L(2) |
≈ |
0.8901127041 |
L(21) |
≈ |
0.8901127041 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5iT |
good | 7 | 1−20.7iT−343T2 |
| 11 | 1−36.3T+1.33e3T2 |
| 13 | 1+47T+2.19e3T2 |
| 17 | 1+21iT−4.91e3T2 |
| 19 | 1+62.3iT−6.85e3T2 |
| 23 | 1−36.3T+1.21e4T2 |
| 29 | 1−123iT−2.43e4T2 |
| 31 | 1−25.9iT−2.97e4T2 |
| 37 | 1+178T+5.06e4T2 |
| 41 | 1−342iT−6.89e4T2 |
| 43 | 1−233.iT−7.95e4T2 |
| 47 | 1−306.T+1.03e5T2 |
| 53 | 1−414iT−1.48e5T2 |
| 59 | 1+446.T+2.05e5T2 |
| 61 | 1−542T+2.26e5T2 |
| 67 | 1−155.iT−3.00e5T2 |
| 71 | 1+852.T+3.57e5T2 |
| 73 | 1−232T+3.89e5T2 |
| 79 | 1−348.iT−4.93e5T2 |
| 83 | 1+405.T+5.71e5T2 |
| 89 | 1+1.35e3iT−7.04e5T2 |
| 97 | 1+1.04e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.148701862920846544285939254152, −8.496245740881756200056824224534, −7.40629457137832818037287898564, −6.82074837197660996824644662399, −5.99791061500127688941836083757, −5.15295650009407186980454866880, −4.35056165086576368470179048200, −3.10462251469429307071810747416, −2.50049631462422821294937239586, −1.33735204124623489846335512415,
0.18512213008751159904039247649, 1.17473480166577947928305689713, 2.19690992331681416789362765604, 3.63908584709686883285952056317, 4.13223003103368139136883782474, 5.05968999715628395222260700937, 5.97381611044847364163438242546, 6.95800716291271090520981687587, 7.43107958000274690565680051857, 8.349763197766835549413694720404