L(s) = 1 | + 5i·5-s + 20.7i·7-s + 36.3·11-s − 47·13-s − 21i·17-s − 62.3i·19-s + 36.3·23-s − 25·25-s + 123i·29-s + 25.9i·31-s − 103.·35-s − 178·37-s + 342i·41-s + 233. i·43-s + 306.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s + 1.12i·7-s + 0.996·11-s − 1.00·13-s − 0.299i·17-s − 0.752i·19-s + 0.329·23-s − 0.200·25-s + 0.787i·29-s + 0.150i·31-s − 0.501·35-s − 0.790·37-s + 1.30i·41-s + 0.829i·43-s + 0.951·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.8901127041\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8901127041\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 - 20.7iT - 343T^{2} \) |
| 11 | \( 1 - 36.3T + 1.33e3T^{2} \) |
| 13 | \( 1 + 47T + 2.19e3T^{2} \) |
| 17 | \( 1 + 21iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 62.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 36.3T + 1.21e4T^{2} \) |
| 29 | \( 1 - 123iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 25.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 178T + 5.06e4T^{2} \) |
| 41 | \( 1 - 342iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 233. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 306.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 414iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 446.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 542T + 2.26e5T^{2} \) |
| 67 | \( 1 - 155. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 852.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 232T + 3.89e5T^{2} \) |
| 79 | \( 1 - 348. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 405.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.35e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.04e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.148701862920846544285939254152, −8.496245740881756200056824224534, −7.40629457137832818037287898564, −6.82074837197660996824644662399, −5.99791061500127688941836083757, −5.15295650009407186980454866880, −4.35056165086576368470179048200, −3.10462251469429307071810747416, −2.50049631462422821294937239586, −1.33735204124623489846335512415,
0.18512213008751159904039247649, 1.17473480166577947928305689713, 2.19690992331681416789362765604, 3.63908584709686883285952056317, 4.13223003103368139136883782474, 5.05968999715628395222260700937, 5.97381611044847364163438242546, 6.95800716291271090520981687587, 7.43107958000274690565680051857, 8.349763197766835549413694720404