Properties

Label 2-2160-12.11-c1-0-9
Degree $2$
Conductor $2160$
Sign $-i$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s + 4.73i·7-s − 4.73·11-s + 6.19·13-s − 5.19i·17-s + 0.464i·19-s + 4.26·23-s − 25-s + 8.19i·29-s + 0.464i·31-s + 4.73·35-s + 2·37-s + 2.19i·41-s + 5.66i·43-s − 9.46·47-s + ⋯
L(s)  = 1  − 0.447i·5-s + 1.78i·7-s − 1.42·11-s + 1.71·13-s − 1.26i·17-s + 0.106i·19-s + 0.889·23-s − 0.200·25-s + 1.52i·29-s + 0.0833i·31-s + 0.799·35-s + 0.328·37-s + 0.342i·41-s + 0.863i·43-s − 1.38·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-i$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.420906987\)
\(L(\frac12)\) \(\approx\) \(1.420906987\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + iT \)
good7 \( 1 - 4.73iT - 7T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
13 \( 1 - 6.19T + 13T^{2} \)
17 \( 1 + 5.19iT - 17T^{2} \)
19 \( 1 - 0.464iT - 19T^{2} \)
23 \( 1 - 4.26T + 23T^{2} \)
29 \( 1 - 8.19iT - 29T^{2} \)
31 \( 1 - 0.464iT - 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 2.19iT - 41T^{2} \)
43 \( 1 - 5.66iT - 43T^{2} \)
47 \( 1 + 9.46T + 47T^{2} \)
53 \( 1 - 11.1iT - 53T^{2} \)
59 \( 1 - 5.66T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 10.3iT - 67T^{2} \)
71 \( 1 + 4.73T + 71T^{2} \)
73 \( 1 + 4.19T + 73T^{2} \)
79 \( 1 - 9.92iT - 79T^{2} \)
83 \( 1 + 5.19T + 83T^{2} \)
89 \( 1 - 14.1iT - 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.052813649819912957001489825625, −8.605120203779839910341464199134, −7.968977223843871554604815401697, −6.88751746539785423955840514277, −5.87922755984119348496344402269, −5.37626723346144320415770465442, −4.69909309616188821483787809321, −3.18986345766012403224163924120, −2.62688782480522439807356017849, −1.31398808466998804631050492899, 0.52576368104977398623015708558, 1.80484765349897089130126594125, 3.24554581397598036876368584785, 3.84678764616181897334961248691, 4.72271820736228343799453897253, 5.88089786954278546467640145991, 6.54801771529231945686448002656, 7.41428225271384938875282564884, 8.019484424208002091569181280772, 8.672676622884276120883968149444

Graph of the $Z$-function along the critical line