L(s) = 1 | − i·5-s + 4.73i·7-s − 4.73·11-s + 6.19·13-s − 5.19i·17-s + 0.464i·19-s + 4.26·23-s − 25-s + 8.19i·29-s + 0.464i·31-s + 4.73·35-s + 2·37-s + 2.19i·41-s + 5.66i·43-s − 9.46·47-s + ⋯ |
L(s) = 1 | − 0.447i·5-s + 1.78i·7-s − 1.42·11-s + 1.71·13-s − 1.26i·17-s + 0.106i·19-s + 0.889·23-s − 0.200·25-s + 1.52i·29-s + 0.0833i·31-s + 0.799·35-s + 0.328·37-s + 0.342i·41-s + 0.863i·43-s − 1.38·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
1.420906987 |
L(21) |
≈ |
1.420906987 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+iT |
good | 7 | 1−4.73iT−7T2 |
| 11 | 1+4.73T+11T2 |
| 13 | 1−6.19T+13T2 |
| 17 | 1+5.19iT−17T2 |
| 19 | 1−0.464iT−19T2 |
| 23 | 1−4.26T+23T2 |
| 29 | 1−8.19iT−29T2 |
| 31 | 1−0.464iT−31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1−2.19iT−41T2 |
| 43 | 1−5.66iT−43T2 |
| 47 | 1+9.46T+47T2 |
| 53 | 1−11.1iT−53T2 |
| 59 | 1−5.66T+59T2 |
| 61 | 1+T+61T2 |
| 67 | 1−10.3iT−67T2 |
| 71 | 1+4.73T+71T2 |
| 73 | 1+4.19T+73T2 |
| 79 | 1−9.92iT−79T2 |
| 83 | 1+5.19T+83T2 |
| 89 | 1−14.1iT−89T2 |
| 97 | 1+8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.052813649819912957001489825625, −8.605120203779839910341464199134, −7.968977223843871554604815401697, −6.88751746539785423955840514277, −5.87922755984119348496344402269, −5.37626723346144320415770465442, −4.69909309616188821483787809321, −3.18986345766012403224163924120, −2.62688782480522439807356017849, −1.31398808466998804631050492899,
0.52576368104977398623015708558, 1.80484765349897089130126594125, 3.24554581397598036876368584785, 3.84678764616181897334961248691, 4.72271820736228343799453897253, 5.88089786954278546467640145991, 6.54801771529231945686448002656, 7.41428225271384938875282564884, 8.019484424208002091569181280772, 8.672676622884276120883968149444