Properties

Label 2-2160-12.11-c1-0-16
Degree $2$
Conductor $2160$
Sign $1$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s − 1.73i·7-s + 3.46·11-s + 13-s + 1.73i·19-s + 3.46·23-s − 25-s + 6i·29-s − 3.46i·31-s + 1.73·35-s − 7·37-s − 6i·41-s − 3.46i·43-s + 6.92·47-s + 4·49-s + ⋯
L(s)  = 1  + 0.447i·5-s − 0.654i·7-s + 1.04·11-s + 0.277·13-s + 0.397i·19-s + 0.722·23-s − 0.200·25-s + 1.11i·29-s − 0.622i·31-s + 0.292·35-s − 1.15·37-s − 0.937i·41-s − 0.528i·43-s + 1.01·47-s + 0.571·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.925927655\)
\(L(\frac12)\) \(\approx\) \(1.925927655\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
good7 \( 1 + 1.73iT - 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 1.73iT - 19T^{2} \)
23 \( 1 - 3.46T + 23T^{2} \)
29 \( 1 - 6iT - 29T^{2} \)
31 \( 1 + 3.46iT - 31T^{2} \)
37 \( 1 + 7T + 37T^{2} \)
41 \( 1 + 6iT - 41T^{2} \)
43 \( 1 + 3.46iT - 43T^{2} \)
47 \( 1 - 6.92T + 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 5.19iT - 67T^{2} \)
71 \( 1 - 3.46T + 71T^{2} \)
73 \( 1 - T + 73T^{2} \)
79 \( 1 - 8.66iT - 79T^{2} \)
83 \( 1 - 10.3T + 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.003144846143837835516842773062, −8.423850186662513811207976314202, −7.20021097924390878549922567799, −6.98737462720311130208889987448, −5.99532774583619869436576379465, −5.10411608875379806072954311305, −3.94408378957739154941273383026, −3.49633787112694568590308516523, −2.14178722861798386979094389402, −0.937952479543584697810901185521, 0.963429626694168764341601162701, 2.13694360238549647192676374937, 3.27462571662969934193773560785, 4.24107494207845485717800315905, 5.07804056398547159204739192426, 5.94745949388314923772472107160, 6.65748250562851938265639058011, 7.53674134696136161783049568137, 8.550581290872616602591855266784, 8.970392105299087083794673635712

Graph of the $Z$-function along the critical line