L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (−0.809 − 0.587i)16-s − 18-s + (0.309 − 0.951i)22-s − 1.90i·23-s + (−0.309 + 0.951i)25-s + (0.5 + 1.53i)29-s − 32-s + (−0.809 + 0.587i)36-s + (−0.190 − 0.587i)37-s − 1.17i·43-s + (−0.309 − 0.951i)44-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (−0.809 − 0.587i)16-s − 18-s + (0.309 − 0.951i)22-s − 1.90i·23-s + (−0.309 + 0.951i)25-s + (0.5 + 1.53i)29-s − 32-s + (−0.809 + 0.587i)36-s + (−0.190 − 0.587i)37-s − 1.17i·43-s + (−0.309 − 0.951i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.286 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.286 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.731714765\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.731714765\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.809 + 0.587i)T \) |
good | 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + 1.90iT - T^{2} \) |
| 29 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.17iT - T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.17iT - T^{2} \) |
| 71 | \( 1 + (-0.690 - 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.912864791482909603938348477830, −8.675237519144662839495920612250, −7.18127077204117080544613769631, −6.49033458759685869512369331743, −5.80168470568820513954718102093, −5.00792384787480750087675018877, −3.95570889537423960554649426246, −3.30080513058424071049616693781, −2.34378197902843575970533307881, −0.963113067085820361643528446419,
1.93613290028870277772552978196, 2.94963164383529625575826051288, 3.94747622880843381280010349217, 4.70402838962780319898764472890, 5.60841165878992448041848328950, 6.22730742995106082540599559250, 7.09280914247039021216855352188, 7.87671405816392816643041156320, 8.443798418431548599369426063837, 9.395294917626435868040980214970