L(s) = 1 | + 5·3-s + 7·5-s − 2·9-s − 11·11-s − 52·13-s + 35·15-s − 46·17-s + 96·19-s + 27·23-s − 76·25-s − 145·27-s + 16·29-s + 293·31-s − 55·33-s − 29·37-s − 260·39-s + 472·41-s − 110·43-s − 14·45-s + 224·47-s − 230·51-s + 754·53-s − 77·55-s + 480·57-s − 825·59-s + 548·61-s − 364·65-s + ⋯ |
L(s) = 1 | + 0.962·3-s + 0.626·5-s − 0.0740·9-s − 0.301·11-s − 1.10·13-s + 0.602·15-s − 0.656·17-s + 1.15·19-s + 0.244·23-s − 0.607·25-s − 1.03·27-s + 0.102·29-s + 1.69·31-s − 0.290·33-s − 0.128·37-s − 1.06·39-s + 1.79·41-s − 0.390·43-s − 0.0463·45-s + 0.695·47-s − 0.631·51-s + 1.95·53-s − 0.188·55-s + 1.11·57-s − 1.82·59-s + 1.15·61-s − 0.694·65-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2156s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.221920872 |
L(21) |
≈ |
3.221920872 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1+pT |
good | 3 | 1−5T+p3T2 |
| 5 | 1−7T+p3T2 |
| 13 | 1+4pT+p3T2 |
| 17 | 1+46T+p3T2 |
| 19 | 1−96T+p3T2 |
| 23 | 1−27T+p3T2 |
| 29 | 1−16T+p3T2 |
| 31 | 1−293T+p3T2 |
| 37 | 1+29T+p3T2 |
| 41 | 1−472T+p3T2 |
| 43 | 1+110T+p3T2 |
| 47 | 1−224T+p3T2 |
| 53 | 1−754T+p3T2 |
| 59 | 1+825T+p3T2 |
| 61 | 1−548T+p3T2 |
| 67 | 1+123T+p3T2 |
| 71 | 1−1001T+p3T2 |
| 73 | 1−1020T+p3T2 |
| 79 | 1−526T+p3T2 |
| 83 | 1−158T+p3T2 |
| 89 | 1−1217T+p3T2 |
| 97 | 1−263T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.794266427745288570650119341614, −7.930730449002280849453570115533, −7.39899213381896901552690483251, −6.39562919451500966656812411301, −5.51238494649100799433347544718, −4.72825591134328527969285361270, −3.64173091144746530279267835125, −2.60230011025103489382875352299, −2.22735929181966407734513557795, −0.75493905879002333244016796085,
0.75493905879002333244016796085, 2.22735929181966407734513557795, 2.60230011025103489382875352299, 3.64173091144746530279267835125, 4.72825591134328527969285361270, 5.51238494649100799433347544718, 6.39562919451500966656812411301, 7.39899213381896901552690483251, 7.930730449002280849453570115533, 8.794266427745288570650119341614