Properties

Label 2-2142-1.1-c1-0-8
Degree $2$
Conductor $2142$
Sign $1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 0.561·5-s − 7-s − 8-s − 0.561·10-s − 2.56·11-s + 4.56·13-s + 14-s + 16-s − 17-s + 1.12·19-s + 0.561·20-s + 2.56·22-s + 5.12·23-s − 4.68·25-s − 4.56·26-s − 28-s − 8.24·29-s + 10.2·31-s − 32-s + 34-s − 0.561·35-s − 0.561·37-s − 1.12·38-s − 0.561·40-s + 3.12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.251·5-s − 0.377·7-s − 0.353·8-s − 0.177·10-s − 0.772·11-s + 1.26·13-s + 0.267·14-s + 0.250·16-s − 0.242·17-s + 0.257·19-s + 0.125·20-s + 0.546·22-s + 1.06·23-s − 0.936·25-s − 0.894·26-s − 0.188·28-s − 1.53·29-s + 1.84·31-s − 0.176·32-s + 0.171·34-s − 0.0949·35-s − 0.0923·37-s − 0.182·38-s − 0.0887·40-s + 0.487·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.221269639\)
\(L(\frac12)\) \(\approx\) \(1.221269639\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 0.561T + 5T^{2} \)
11 \( 1 + 2.56T + 11T^{2} \)
13 \( 1 - 4.56T + 13T^{2} \)
19 \( 1 - 1.12T + 19T^{2} \)
23 \( 1 - 5.12T + 23T^{2} \)
29 \( 1 + 8.24T + 29T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 + 0.561T + 37T^{2} \)
41 \( 1 - 3.12T + 41T^{2} \)
43 \( 1 + 10.5T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 - 13.6T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 8.24T + 61T^{2} \)
67 \( 1 - 0.315T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 6.80T + 73T^{2} \)
79 \( 1 + 3.68T + 79T^{2} \)
83 \( 1 + 17.9T + 83T^{2} \)
89 \( 1 - 9.68T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.959149278123731109775907740095, −8.484846715360340993838215095004, −7.59247500985697553560585836674, −6.85536474370236827451390246071, −5.99255878983429848715529982618, −5.34857207554231682230771847466, −4.05134848158383684567011442898, −3.09267287205089528279006692670, −2.08850723716282609697569315890, −0.808870634731806182246694843489, 0.808870634731806182246694843489, 2.08850723716282609697569315890, 3.09267287205089528279006692670, 4.05134848158383684567011442898, 5.34857207554231682230771847466, 5.99255878983429848715529982618, 6.85536474370236827451390246071, 7.59247500985697553560585836674, 8.484846715360340993838215095004, 8.959149278123731109775907740095

Graph of the $Z$-function along the critical line