Properties

Label 2-2142-1.1-c1-0-19
Degree $2$
Conductor $2142$
Sign $1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 7-s + 8-s + 2·10-s − 1.16·11-s − 3.16·13-s + 14-s + 16-s + 17-s + 5.16·19-s + 2·20-s − 1.16·22-s − 25-s − 3.16·26-s + 28-s + 9.48·29-s + 8.32·31-s + 32-s + 34-s + 2·35-s + 7.16·37-s + 5.16·38-s + 2·40-s − 1.16·44-s − 4·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.894·5-s + 0.377·7-s + 0.353·8-s + 0.632·10-s − 0.350·11-s − 0.877·13-s + 0.267·14-s + 0.250·16-s + 0.242·17-s + 1.18·19-s + 0.447·20-s − 0.247·22-s − 0.200·25-s − 0.620·26-s + 0.188·28-s + 1.76·29-s + 1.49·31-s + 0.176·32-s + 0.171·34-s + 0.338·35-s + 1.17·37-s + 0.837·38-s + 0.316·40-s − 0.175·44-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.486955025\)
\(L(\frac12)\) \(\approx\) \(3.486955025\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 - 2T + 5T^{2} \)
11 \( 1 + 1.16T + 11T^{2} \)
13 \( 1 + 3.16T + 13T^{2} \)
19 \( 1 - 5.16T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 9.48T + 29T^{2} \)
31 \( 1 - 8.32T + 31T^{2} \)
37 \( 1 - 7.16T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 5.16T + 59T^{2} \)
61 \( 1 + 14.6T + 61T^{2} \)
67 \( 1 - 2.32T + 67T^{2} \)
71 \( 1 + 14.3T + 71T^{2} \)
73 \( 1 - 8T + 73T^{2} \)
79 \( 1 - 1.67T + 79T^{2} \)
83 \( 1 + 17.8T + 83T^{2} \)
89 \( 1 - 0.324T + 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.221605402569470019139810204373, −8.113636228720202306586346737322, −7.51421241230610793984707882429, −6.53008104792571167214076692358, −5.85688066280876825724654035434, −5.01874718867933472540518330654, −4.48167603445897652270861992348, −3.07680723954535702203805150325, −2.42859355131903772727003787368, −1.21008405321955923840890489064, 1.21008405321955923840890489064, 2.42859355131903772727003787368, 3.07680723954535702203805150325, 4.48167603445897652270861992348, 5.01874718867933472540518330654, 5.85688066280876825724654035434, 6.53008104792571167214076692358, 7.51421241230610793984707882429, 8.113636228720202306586346737322, 9.221605402569470019139810204373

Graph of the $Z$-function along the critical line