Properties

Label 2-2142-1.1-c1-0-10
Degree $2$
Conductor $2142$
Sign $1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s + 7-s − 8-s + 2·10-s + 4.89·11-s + 2.89·13-s − 14-s + 16-s + 17-s + 4.89·19-s − 2·20-s − 4.89·22-s + 4·23-s − 25-s − 2.89·26-s + 28-s − 6.89·29-s − 9.79·31-s − 32-s − 34-s − 2·35-s − 6.89·37-s − 4.89·38-s + 2·40-s + 2·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.894·5-s + 0.377·7-s − 0.353·8-s + 0.632·10-s + 1.47·11-s + 0.804·13-s − 0.267·14-s + 0.250·16-s + 0.242·17-s + 1.12·19-s − 0.447·20-s − 1.04·22-s + 0.834·23-s − 0.200·25-s − 0.568·26-s + 0.188·28-s − 1.28·29-s − 1.75·31-s − 0.176·32-s − 0.171·34-s − 0.338·35-s − 1.13·37-s − 0.794·38-s + 0.316·40-s + 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.266920705\)
\(L(\frac12)\) \(\approx\) \(1.266920705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + 2T + 5T^{2} \)
11 \( 1 - 4.89T + 11T^{2} \)
13 \( 1 - 2.89T + 13T^{2} \)
19 \( 1 - 4.89T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 6.89T + 29T^{2} \)
31 \( 1 + 9.79T + 31T^{2} \)
37 \( 1 + 6.89T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 0.898T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 5.79T + 67T^{2} \)
71 \( 1 - 5.79T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 - 9.79T + 79T^{2} \)
83 \( 1 - 7.10T + 83T^{2} \)
89 \( 1 - 11.7T + 89T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.147080369599292490919996109888, −8.372541820678954161124406893595, −7.48571867361843685659515974120, −7.10067312471550220789919331329, −6.04805012883477886239974188303, −5.17542264384621679892914186148, −3.81946932482990303785827487700, −3.52370330843342571900505093837, −1.86784481485873700349840901877, −0.866584398421233322807915499967, 0.866584398421233322807915499967, 1.86784481485873700349840901877, 3.52370330843342571900505093837, 3.81946932482990303785827487700, 5.17542264384621679892914186148, 6.04805012883477886239974188303, 7.10067312471550220789919331329, 7.48571867361843685659515974120, 8.372541820678954161124406893595, 9.147080369599292490919996109888

Graph of the $Z$-function along the critical line