Properties

Label 2-2112-1.1-c3-0-31
Degree $2$
Conductor $2112$
Sign $1$
Analytic cond. $124.612$
Root an. cond. $11.1629$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3.48·5-s − 4.74·7-s + 9·9-s − 11·11-s + 15.0·13-s − 10.4·15-s + 73.1·17-s + 78.7·19-s + 14.2·21-s + 112·23-s − 112.·25-s − 27·27-s − 243.·29-s + 278.·31-s + 33·33-s − 16.5·35-s − 102.·37-s − 45.0·39-s − 241.·41-s + 280.·43-s + 31.4·45-s − 169.·47-s − 320.·49-s − 219.·51-s + 409.·53-s − 38.3·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.312·5-s − 0.256·7-s + 0.333·9-s − 0.301·11-s + 0.320·13-s − 0.180·15-s + 1.04·17-s + 0.950·19-s + 0.147·21-s + 1.01·23-s − 0.902·25-s − 0.192·27-s − 1.55·29-s + 1.61·31-s + 0.174·33-s − 0.0799·35-s − 0.454·37-s − 0.185·39-s − 0.918·41-s + 0.993·43-s + 0.104·45-s − 0.527·47-s − 0.934·49-s − 0.602·51-s + 1.06·53-s − 0.0940·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2112\)    =    \(2^{6} \cdot 3 \cdot 11\)
Sign: $1$
Analytic conductor: \(124.612\)
Root analytic conductor: \(11.1629\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2112,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.830727354\)
\(L(\frac12)\) \(\approx\) \(1.830727354\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
11 \( 1 + 11T \)
good5 \( 1 - 3.48T + 125T^{2} \)
7 \( 1 + 4.74T + 343T^{2} \)
13 \( 1 - 15.0T + 2.19e3T^{2} \)
17 \( 1 - 73.1T + 4.91e3T^{2} \)
19 \( 1 - 78.7T + 6.85e3T^{2} \)
23 \( 1 - 112T + 1.21e4T^{2} \)
29 \( 1 + 243.T + 2.43e4T^{2} \)
31 \( 1 - 278.T + 2.97e4T^{2} \)
37 \( 1 + 102.T + 5.06e4T^{2} \)
41 \( 1 + 241.T + 6.89e4T^{2} \)
43 \( 1 - 280.T + 7.95e4T^{2} \)
47 \( 1 + 169.T + 1.03e5T^{2} \)
53 \( 1 - 409.T + 1.48e5T^{2} \)
59 \( 1 + 196T + 2.05e5T^{2} \)
61 \( 1 - 701.T + 2.26e5T^{2} \)
67 \( 1 + 900.T + 3.00e5T^{2} \)
71 \( 1 - 756.T + 3.57e5T^{2} \)
73 \( 1 + 1.01e3T + 3.89e5T^{2} \)
79 \( 1 + 327.T + 4.93e5T^{2} \)
83 \( 1 - 756.T + 5.71e5T^{2} \)
89 \( 1 - 508.T + 7.04e5T^{2} \)
97 \( 1 - 614.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.815810639442874799172705007753, −7.82227227478686751033263048979, −7.20899282042960774437768775724, −6.26021005530900535605219196833, −5.57833888984777959040823979141, −4.94777553986942266350621156727, −3.77420062097868305644775264830, −2.94376281174833214094834403519, −1.65220505299215808183299885422, −0.65723672139089052886033253474, 0.65723672139089052886033253474, 1.65220505299215808183299885422, 2.94376281174833214094834403519, 3.77420062097868305644775264830, 4.94777553986942266350621156727, 5.57833888984777959040823979141, 6.26021005530900535605219196833, 7.20899282042960774437768775724, 7.82227227478686751033263048979, 8.815810639442874799172705007753

Graph of the $Z$-function along the critical line