L(s) = 1 | − 3·3-s + 3.48·5-s − 4.74·7-s + 9·9-s − 11·11-s + 15.0·13-s − 10.4·15-s + 73.1·17-s + 78.7·19-s + 14.2·21-s + 112·23-s − 112.·25-s − 27·27-s − 243.·29-s + 278.·31-s + 33·33-s − 16.5·35-s − 102.·37-s − 45.0·39-s − 241.·41-s + 280.·43-s + 31.4·45-s − 169.·47-s − 320.·49-s − 219.·51-s + 409.·53-s − 38.3·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.312·5-s − 0.256·7-s + 0.333·9-s − 0.301·11-s + 0.320·13-s − 0.180·15-s + 1.04·17-s + 0.950·19-s + 0.147·21-s + 1.01·23-s − 0.902·25-s − 0.192·27-s − 1.55·29-s + 1.61·31-s + 0.174·33-s − 0.0799·35-s − 0.454·37-s − 0.185·39-s − 0.918·41-s + 0.993·43-s + 0.104·45-s − 0.527·47-s − 0.934·49-s − 0.602·51-s + 1.06·53-s − 0.0940·55-s + ⋯ |
Λ(s)=(=(2112s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2112s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.830727354 |
L(21) |
≈ |
1.830727354 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 11 | 1+11T |
good | 5 | 1−3.48T+125T2 |
| 7 | 1+4.74T+343T2 |
| 13 | 1−15.0T+2.19e3T2 |
| 17 | 1−73.1T+4.91e3T2 |
| 19 | 1−78.7T+6.85e3T2 |
| 23 | 1−112T+1.21e4T2 |
| 29 | 1+243.T+2.43e4T2 |
| 31 | 1−278.T+2.97e4T2 |
| 37 | 1+102.T+5.06e4T2 |
| 41 | 1+241.T+6.89e4T2 |
| 43 | 1−280.T+7.95e4T2 |
| 47 | 1+169.T+1.03e5T2 |
| 53 | 1−409.T+1.48e5T2 |
| 59 | 1+196T+2.05e5T2 |
| 61 | 1−701.T+2.26e5T2 |
| 67 | 1+900.T+3.00e5T2 |
| 71 | 1−756.T+3.57e5T2 |
| 73 | 1+1.01e3T+3.89e5T2 |
| 79 | 1+327.T+4.93e5T2 |
| 83 | 1−756.T+5.71e5T2 |
| 89 | 1−508.T+7.04e5T2 |
| 97 | 1−614.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.815810639442874799172705007753, −7.82227227478686751033263048979, −7.20899282042960774437768775724, −6.26021005530900535605219196833, −5.57833888984777959040823979141, −4.94777553986942266350621156727, −3.77420062097868305644775264830, −2.94376281174833214094834403519, −1.65220505299215808183299885422, −0.65723672139089052886033253474,
0.65723672139089052886033253474, 1.65220505299215808183299885422, 2.94376281174833214094834403519, 3.77420062097868305644775264830, 4.94777553986942266350621156727, 5.57833888984777959040823979141, 6.26021005530900535605219196833, 7.20899282042960774437768775724, 7.82227227478686751033263048979, 8.815810639442874799172705007753