Properties

Label 2-2106-1.1-c1-0-45
Degree $2$
Conductor $2106$
Sign $-1$
Analytic cond. $16.8164$
Root an. cond. $4.10079$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 0.732·5-s − 3.73·7-s + 8-s + 0.732·10-s − 3.73·11-s − 13-s − 3.73·14-s + 16-s − 3.46·17-s + 6.46·19-s + 0.732·20-s − 3.73·22-s + 4.19·23-s − 4.46·25-s − 26-s − 3.73·28-s + 2.46·29-s − 5.46·31-s + 32-s − 3.46·34-s − 2.73·35-s − 9.46·37-s + 6.46·38-s + 0.732·40-s − 7.26·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.327·5-s − 1.41·7-s + 0.353·8-s + 0.231·10-s − 1.12·11-s − 0.277·13-s − 0.997·14-s + 0.250·16-s − 0.840·17-s + 1.48·19-s + 0.163·20-s − 0.795·22-s + 0.874·23-s − 0.892·25-s − 0.196·26-s − 0.705·28-s + 0.457·29-s − 0.981·31-s + 0.176·32-s − 0.594·34-s − 0.461·35-s − 1.55·37-s + 1.04·38-s + 0.115·40-s − 1.13·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2106\)    =    \(2 \cdot 3^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(16.8164\)
Root analytic conductor: \(4.10079\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2106,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 0.732T + 5T^{2} \)
7 \( 1 + 3.73T + 7T^{2} \)
11 \( 1 + 3.73T + 11T^{2} \)
17 \( 1 + 3.46T + 17T^{2} \)
19 \( 1 - 6.46T + 19T^{2} \)
23 \( 1 - 4.19T + 23T^{2} \)
29 \( 1 - 2.46T + 29T^{2} \)
31 \( 1 + 5.46T + 31T^{2} \)
37 \( 1 + 9.46T + 37T^{2} \)
41 \( 1 + 7.26T + 41T^{2} \)
43 \( 1 + 8.92T + 43T^{2} \)
47 \( 1 + 4.53T + 47T^{2} \)
53 \( 1 + 12.4T + 53T^{2} \)
59 \( 1 + 5.73T + 59T^{2} \)
61 \( 1 + 1.19T + 61T^{2} \)
67 \( 1 - 14.3T + 67T^{2} \)
71 \( 1 + 8.46T + 71T^{2} \)
73 \( 1 - 5.46T + 73T^{2} \)
79 \( 1 - 4.19T + 79T^{2} \)
83 \( 1 - 1.73T + 83T^{2} \)
89 \( 1 + 8.19T + 89T^{2} \)
97 \( 1 - 6.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.791827720066956787144312068013, −7.72631866169123943631201932539, −6.95215657817845486665494552397, −6.36189585671489131292085073389, −5.37732281051159300999161447710, −4.89901461160539060648847913943, −3.45680866896735572553399382802, −3.06288125545901121212302253757, −1.90040085272481334899903322657, 0, 1.90040085272481334899903322657, 3.06288125545901121212302253757, 3.45680866896735572553399382802, 4.89901461160539060648847913943, 5.37732281051159300999161447710, 6.36189585671489131292085073389, 6.95215657817845486665494552397, 7.72631866169123943631201932539, 8.791827720066956787144312068013

Graph of the $Z$-function along the critical line