Properties

Label 2-2106-1.1-c1-0-26
Degree $2$
Conductor $2106$
Sign $1$
Analytic cond. $16.8164$
Root an. cond. $4.10079$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 1.11·5-s + 2.80·7-s + 8-s + 1.11·10-s + 4.77·11-s − 13-s + 2.80·14-s + 16-s − 4.69·17-s + 6.77·19-s + 1.11·20-s + 4.77·22-s + 2·23-s − 3.75·25-s − 26-s + 2.80·28-s + 0.229·29-s − 7.61·31-s + 32-s − 4.69·34-s + 3.12·35-s + 5.11·37-s + 6.77·38-s + 1.11·40-s − 6.77·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.498·5-s + 1.05·7-s + 0.353·8-s + 0.352·10-s + 1.44·11-s − 0.277·13-s + 0.748·14-s + 0.250·16-s − 1.13·17-s + 1.55·19-s + 0.249·20-s + 1.01·22-s + 0.417·23-s − 0.751·25-s − 0.196·26-s + 0.529·28-s + 0.0427·29-s − 1.36·31-s + 0.176·32-s − 0.805·34-s + 0.528·35-s + 0.840·37-s + 1.09·38-s + 0.176·40-s − 1.05·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2106\)    =    \(2 \cdot 3^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(16.8164\)
Root analytic conductor: \(4.10079\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2106,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.729903647\)
\(L(\frac12)\) \(\approx\) \(3.729903647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 1.11T + 5T^{2} \)
7 \( 1 - 2.80T + 7T^{2} \)
11 \( 1 - 4.77T + 11T^{2} \)
17 \( 1 + 4.69T + 17T^{2} \)
19 \( 1 - 6.77T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 0.229T + 29T^{2} \)
31 \( 1 + 7.61T + 31T^{2} \)
37 \( 1 - 5.11T + 37T^{2} \)
41 \( 1 + 6.77T + 41T^{2} \)
43 \( 1 - 8.69T + 43T^{2} \)
47 \( 1 + 7.47T + 47T^{2} \)
53 \( 1 - 1.77T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 + 3.83T + 61T^{2} \)
67 \( 1 - 14.3T + 67T^{2} \)
71 \( 1 - 13.9T + 71T^{2} \)
73 \( 1 + 4.15T + 73T^{2} \)
79 \( 1 - 0.165T + 79T^{2} \)
83 \( 1 + 2.39T + 83T^{2} \)
89 \( 1 + 13.8T + 89T^{2} \)
97 \( 1 - 7.00T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.272023449077188564258078065185, −8.257660183148223408026758440331, −7.38233819202284749655940112335, −6.69513300598838625323432997228, −5.82109775608287181696349898652, −5.05788252162865940597353541949, −4.30708495947186516356698618825, −3.40931177034335363036775863249, −2.14343749747332910483129209008, −1.33660084121077300124740369829, 1.33660084121077300124740369829, 2.14343749747332910483129209008, 3.40931177034335363036775863249, 4.30708495947186516356698618825, 5.05788252162865940597353541949, 5.82109775608287181696349898652, 6.69513300598838625323432997228, 7.38233819202284749655940112335, 8.257660183148223408026758440331, 9.272023449077188564258078065185

Graph of the $Z$-function along the critical line