Properties

Label 2-2106-1.1-c1-0-15
Degree $2$
Conductor $2106$
Sign $1$
Analytic cond. $16.8164$
Root an. cond. $4.10079$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.28·5-s − 2.81·7-s − 8-s − 3.28·10-s + 5.17·11-s + 13-s + 2.81·14-s + 16-s − 0.699·17-s + 7.17·19-s + 3.28·20-s − 5.17·22-s − 6·23-s + 5.81·25-s − 26-s − 2.81·28-s − 2.22·29-s + 2.77·31-s − 32-s + 0.699·34-s − 9.24·35-s − 0.712·37-s − 7.17·38-s − 3.28·40-s − 0.823·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.47·5-s − 1.06·7-s − 0.353·8-s − 1.03·10-s + 1.56·11-s + 0.277·13-s + 0.751·14-s + 0.250·16-s − 0.169·17-s + 1.64·19-s + 0.735·20-s − 1.10·22-s − 1.25·23-s + 1.16·25-s − 0.196·26-s − 0.531·28-s − 0.412·29-s + 0.498·31-s − 0.176·32-s + 0.119·34-s − 1.56·35-s − 0.117·37-s − 1.16·38-s − 0.519·40-s − 0.128·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2106\)    =    \(2 \cdot 3^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(16.8164\)
Root analytic conductor: \(4.10079\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2106,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.711860712\)
\(L(\frac12)\) \(\approx\) \(1.711860712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 3.28T + 5T^{2} \)
7 \( 1 + 2.81T + 7T^{2} \)
11 \( 1 - 5.17T + 11T^{2} \)
17 \( 1 + 0.699T + 17T^{2} \)
19 \( 1 - 7.17T + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 2.22T + 29T^{2} \)
31 \( 1 - 2.77T + 31T^{2} \)
37 \( 1 + 0.712T + 37T^{2} \)
41 \( 1 + 0.823T + 41T^{2} \)
43 \( 1 - 11.4T + 43T^{2} \)
47 \( 1 - 1.52T + 47T^{2} \)
53 \( 1 + 11.0T + 53T^{2} \)
59 \( 1 - 14.7T + 59T^{2} \)
61 \( 1 - 9.39T + 61T^{2} \)
67 \( 1 - 0.445T + 67T^{2} \)
71 \( 1 + 1.18T + 71T^{2} \)
73 \( 1 + 0.222T + 73T^{2} \)
79 \( 1 + 15.7T + 79T^{2} \)
83 \( 1 + 7.97T + 83T^{2} \)
89 \( 1 - 7.39T + 89T^{2} \)
97 \( 1 - 4.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.303390347127515351792744086193, −8.648472432483771196600047388933, −7.45996110063730274622090661739, −6.64563809145041549600367418790, −6.11559722750192779300827610279, −5.50794558682088466161968144203, −4.02356867510451173199215886473, −3.07097493382868050596747750217, −1.99186720412819419350336481972, −1.01609030090818265263818988386, 1.01609030090818265263818988386, 1.99186720412819419350336481972, 3.07097493382868050596747750217, 4.02356867510451173199215886473, 5.50794558682088466161968144203, 6.11559722750192779300827610279, 6.64563809145041549600367418790, 7.45996110063730274622090661739, 8.648472432483771196600047388933, 9.303390347127515351792744086193

Graph of the $Z$-function along the critical line