Properties

Label 2-20e2-5.4-c3-0-18
Degree $2$
Conductor $400$
Sign $-0.447 + 0.894i$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6i·3-s + 34i·7-s − 9·9-s − 16·11-s − 58i·13-s − 70i·17-s + 4·19-s + 204·21-s − 134i·23-s − 108i·27-s + 242·29-s − 100·31-s + 96i·33-s − 438i·37-s − 348·39-s + ⋯
L(s)  = 1  − 1.15i·3-s + 1.83i·7-s − 0.333·9-s − 0.438·11-s − 1.23i·13-s − 0.998i·17-s + 0.0482·19-s + 2.11·21-s − 1.21i·23-s − 0.769i·27-s + 1.54·29-s − 0.579·31-s + 0.506i·33-s − 1.94i·37-s − 1.42·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.473999443\)
\(L(\frac12)\) \(\approx\) \(1.473999443\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 6iT - 27T^{2} \)
7 \( 1 - 34iT - 343T^{2} \)
11 \( 1 + 16T + 1.33e3T^{2} \)
13 \( 1 + 58iT - 2.19e3T^{2} \)
17 \( 1 + 70iT - 4.91e3T^{2} \)
19 \( 1 - 4T + 6.85e3T^{2} \)
23 \( 1 + 134iT - 1.21e4T^{2} \)
29 \( 1 - 242T + 2.43e4T^{2} \)
31 \( 1 + 100T + 2.97e4T^{2} \)
37 \( 1 + 438iT - 5.06e4T^{2} \)
41 \( 1 + 138T + 6.89e4T^{2} \)
43 \( 1 - 178iT - 7.95e4T^{2} \)
47 \( 1 + 22iT - 1.03e5T^{2} \)
53 \( 1 + 162iT - 1.48e5T^{2} \)
59 \( 1 + 268T + 2.05e5T^{2} \)
61 \( 1 - 250T + 2.26e5T^{2} \)
67 \( 1 + 422iT - 3.00e5T^{2} \)
71 \( 1 - 852T + 3.57e5T^{2} \)
73 \( 1 + 306iT - 3.89e5T^{2} \)
79 \( 1 + 456T + 4.93e5T^{2} \)
83 \( 1 - 434iT - 5.71e5T^{2} \)
89 \( 1 - 726T + 7.04e5T^{2} \)
97 \( 1 - 1.37e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65826032989368437312712902917, −9.497745797918961760249217369403, −8.501489940770908291551762169589, −7.86478149262175088128876572911, −6.74282190826172659511437740234, −5.82456971045870520194256828519, −4.98514548673724351049126967314, −2.90170012563987265123658771305, −2.18412211548998227946560321303, −0.51723925781288068149057793760, 1.37921044625640459165007256554, 3.45748659073392774035359063936, 4.19442873377851438843916687330, 4.95670295008927289785875435569, 6.51582678129768632772835033799, 7.37929025720895743040115393577, 8.477831212631703126823508346588, 9.664062918747706105855953769166, 10.23063070210092321225062204636, 10.84647483471407206633882960493

Graph of the $Z$-function along the critical line