L(s) = 1 | − 6i·3-s + 34i·7-s − 9·9-s − 16·11-s − 58i·13-s − 70i·17-s + 4·19-s + 204·21-s − 134i·23-s − 108i·27-s + 242·29-s − 100·31-s + 96i·33-s − 438i·37-s − 348·39-s + ⋯ |
L(s) = 1 | − 1.15i·3-s + 1.83i·7-s − 0.333·9-s − 0.438·11-s − 1.23i·13-s − 0.998i·17-s + 0.0482·19-s + 2.11·21-s − 1.21i·23-s − 0.769i·27-s + 1.54·29-s − 0.579·31-s + 0.506i·33-s − 1.94i·37-s − 1.42·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
1.473999443 |
L(21) |
≈ |
1.473999443 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+6iT−27T2 |
| 7 | 1−34iT−343T2 |
| 11 | 1+16T+1.33e3T2 |
| 13 | 1+58iT−2.19e3T2 |
| 17 | 1+70iT−4.91e3T2 |
| 19 | 1−4T+6.85e3T2 |
| 23 | 1+134iT−1.21e4T2 |
| 29 | 1−242T+2.43e4T2 |
| 31 | 1+100T+2.97e4T2 |
| 37 | 1+438iT−5.06e4T2 |
| 41 | 1+138T+6.89e4T2 |
| 43 | 1−178iT−7.95e4T2 |
| 47 | 1+22iT−1.03e5T2 |
| 53 | 1+162iT−1.48e5T2 |
| 59 | 1+268T+2.05e5T2 |
| 61 | 1−250T+2.26e5T2 |
| 67 | 1+422iT−3.00e5T2 |
| 71 | 1−852T+3.57e5T2 |
| 73 | 1+306iT−3.89e5T2 |
| 79 | 1+456T+4.93e5T2 |
| 83 | 1−434iT−5.71e5T2 |
| 89 | 1−726T+7.04e5T2 |
| 97 | 1−1.37e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65826032989368437312712902917, −9.497745797918961760249217369403, −8.501489940770908291551762169589, −7.86478149262175088128876572911, −6.74282190826172659511437740234, −5.82456971045870520194256828519, −4.98514548673724351049126967314, −2.90170012563987265123658771305, −2.18412211548998227946560321303, −0.51723925781288068149057793760,
1.37921044625640459165007256554, 3.45748659073392774035359063936, 4.19442873377851438843916687330, 4.95670295008927289785875435569, 6.51582678129768632772835033799, 7.37929025720895743040115393577, 8.477831212631703126823508346588, 9.664062918747706105855953769166, 10.23063070210092321225062204636, 10.84647483471407206633882960493