L(s) = 1 | + 5i·3-s − 2i·7-s + 2·9-s − 39·11-s − 84i·13-s − 61i·17-s + 151·19-s + 10·21-s − 58i·23-s + 145i·27-s − 192·29-s + 18·31-s − 195i·33-s − 138i·37-s + 420·39-s + ⋯ |
L(s) = 1 | + 0.962i·3-s − 0.107i·7-s + 0.0740·9-s − 1.06·11-s − 1.79i·13-s − 0.870i·17-s + 1.82·19-s + 0.103·21-s − 0.525i·23-s + 1.03i·27-s − 1.22·29-s + 0.104·31-s − 1.02i·33-s − 0.613i·37-s + 1.72·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.894+0.447i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), 0.894+0.447i)
|
Particular Values
L(2) |
≈ |
1.641647825 |
L(21) |
≈ |
1.641647825 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−5iT−27T2 |
| 7 | 1+2iT−343T2 |
| 11 | 1+39T+1.33e3T2 |
| 13 | 1+84iT−2.19e3T2 |
| 17 | 1+61iT−4.91e3T2 |
| 19 | 1−151T+6.85e3T2 |
| 23 | 1+58iT−1.21e4T2 |
| 29 | 1+192T+2.43e4T2 |
| 31 | 1−18T+2.97e4T2 |
| 37 | 1+138iT−5.06e4T2 |
| 41 | 1−229T+6.89e4T2 |
| 43 | 1+164iT−7.95e4T2 |
| 47 | 1−212iT−1.03e5T2 |
| 53 | 1+578iT−1.48e5T2 |
| 59 | 1+336T+2.05e5T2 |
| 61 | 1−858T+2.26e5T2 |
| 67 | 1−209iT−3.00e5T2 |
| 71 | 1−780T+3.57e5T2 |
| 73 | 1−403iT−3.89e5T2 |
| 79 | 1+230T+4.93e5T2 |
| 83 | 1+1.29e3iT−5.71e5T2 |
| 89 | 1−1.36e3T+7.04e5T2 |
| 97 | 1−382iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58128241432074999638222300701, −9.990878595612598660703277764377, −9.209445740719670952106610329777, −7.910282377596835729813208521935, −7.28530267314271904419522932127, −5.50418318458000514619121336293, −5.12173810887201299868240399204, −3.70185621237209127973616967117, −2.73829305316966324934325726136, −0.60961234309670321078894777049,
1.26339501294110320429213289339, 2.33795150742758746190031377900, 3.88474608032378130037057038908, 5.21753486656324671773540152447, 6.30567275052962288945521705611, 7.29851259318978972731056174477, 7.85133730311744519298889962255, 9.103346589423949317988264741806, 9.918054300281964762245625564133, 11.12465080072562340770867535757