L(s) = 1 | + (1 − i)3-s + (−7 − 7i)7-s + 7i·9-s − 10·11-s + (−9 + 9i)13-s + (−1 − i)17-s + 8i·19-s − 14·21-s + (−23 + 23i)23-s + (16 + 16i)27-s − 8i·29-s + 14·31-s + (−10 + 10i)33-s + (−33 − 33i)37-s + 18i·39-s + ⋯ |
L(s) = 1 | + (0.333 − 0.333i)3-s + (−1 − i)7-s + 0.777i·9-s − 0.909·11-s + (−0.692 + 0.692i)13-s + (−0.0588 − 0.0588i)17-s + 0.421i·19-s − 0.666·21-s + (−1 + i)23-s + (0.592 + 0.592i)27-s − 0.275i·29-s + 0.451·31-s + (−0.303 + 0.303i)33-s + (−0.891 − 0.891i)37-s + 0.461i·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.850−0.525i)Λ(3−s)
Λ(s)=(=(400s/2ΓC(s+1)L(s)(−0.850−0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.850−0.525i
|
Analytic conductor: |
10.8992 |
Root analytic conductor: |
3.30139 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1), −0.850−0.525i)
|
Particular Values
L(23) |
≈ |
0.0512526+0.180416i |
L(21) |
≈ |
0.0512526+0.180416i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−1+i)T−9iT2 |
| 7 | 1+(7+7i)T+49iT2 |
| 11 | 1+10T+121T2 |
| 13 | 1+(9−9i)T−169iT2 |
| 17 | 1+(1+i)T+289iT2 |
| 19 | 1−8iT−361T2 |
| 23 | 1+(23−23i)T−529iT2 |
| 29 | 1+8iT−841T2 |
| 31 | 1−14T+961T2 |
| 37 | 1+(33+33i)T+1.36e3iT2 |
| 41 | 1+14T+1.68e3T2 |
| 43 | 1+(15−15i)T−1.84e3iT2 |
| 47 | 1+(39+39i)T+2.20e3iT2 |
| 53 | 1+(−7+7i)T−2.80e3iT2 |
| 59 | 1−56iT−3.48e3T2 |
| 61 | 1−42T+3.72e3T2 |
| 67 | 1+(7+7i)T+4.48e3iT2 |
| 71 | 1+98T+5.04e3T2 |
| 73 | 1+(49−49i)T−5.32e3iT2 |
| 79 | 1+96iT−6.24e3T2 |
| 83 | 1+(63−63i)T−6.88e3iT2 |
| 89 | 1+112iT−7.92e3T2 |
| 97 | 1+(33+33i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41499513159046605609880188291, −10.22727968251262811586009858664, −9.924881399325737445108897709911, −8.572085299272496551984124415464, −7.54623056790744008073582091156, −7.03152782655453350323850298444, −5.72744098947145072525660119313, −4.48457765401652588862314413602, −3.26555131103176463657106291736, −1.96140755417840218347593722656,
0.07153432332835254383280210600, 2.53956892720900427113331112727, 3.30990526953465270386917161561, 4.80020209566613135711326567837, 5.90458906093560965323063219196, 6.77842899970267672950284916551, 8.120787698760519666875659126330, 8.896855359243206894741192457438, 9.848243468833479780588358365579, 10.34075574639242689201889643153