L(s) = 1 | − 3i·9-s + (5 − 5i)13-s + (5 + 5i)17-s − 4i·29-s + (−5 − 5i)37-s + 8·41-s + 7i·49-s + (−5 + 5i)53-s − 12·61-s + (−5 + 5i)73-s − 9·81-s + 16i·89-s + (−5 − 5i)97-s + 2·101-s − 6i·109-s + ⋯ |
L(s) = 1 | − i·9-s + (1.38 − 1.38i)13-s + (1.21 + 1.21i)17-s − 0.742i·29-s + (−0.821 − 0.821i)37-s + 1.24·41-s + i·49-s + (−0.686 + 0.686i)53-s − 1.53·61-s + (−0.585 + 0.585i)73-s − 81-s + 1.69i·89-s + (−0.507 − 0.507i)97-s + 0.199·101-s − 0.574i·109-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.850+0.525i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(0.850+0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.850+0.525i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), 0.850+0.525i)
|
Particular Values
L(1) |
≈ |
1.37935−0.391845i |
L(21) |
≈ |
1.37935−0.391845i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+3iT2 |
| 7 | 1−7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(−5+5i)T−13iT2 |
| 17 | 1+(−5−5i)T+17iT2 |
| 19 | 1+19T2 |
| 23 | 1+23iT2 |
| 29 | 1+4iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+(5+5i)T+37iT2 |
| 41 | 1−8T+41T2 |
| 43 | 1+43iT2 |
| 47 | 1−47iT2 |
| 53 | 1+(5−5i)T−53iT2 |
| 59 | 1+59T2 |
| 61 | 1+12T+61T2 |
| 67 | 1−67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(5−5i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+83iT2 |
| 89 | 1−16iT−89T2 |
| 97 | 1+(5+5i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04472555806920005307368319708, −10.38665363389198613782678020822, −9.368931877555665881972871881716, −8.394194096742075503759627841014, −7.61950321962881613564710904487, −6.17528400162867302190580578900, −5.71084731742201172430389379938, −4.00464382900555206770790773095, −3.15925999426796568586280927185, −1.13266468726042336887303247194,
1.61431408663841428470958862339, 3.19380337442781207459228011090, 4.50293949880647670934962873573, 5.52846652566638912601909530456, 6.68928335851737744391590006756, 7.64187653849720920038089449727, 8.629770810801943550226109079514, 9.493423312652212097735151495875, 10.54545353312228005749820967794, 11.34389581752958628359760485054