L(s) = 1 | − 3i·9-s + (5 − 5i)13-s + (5 + 5i)17-s − 4i·29-s + (−5 − 5i)37-s + 8·41-s + 7i·49-s + (−5 + 5i)53-s − 12·61-s + (−5 + 5i)73-s − 9·81-s + 16i·89-s + (−5 − 5i)97-s + 2·101-s − 6i·109-s + ⋯ |
L(s) = 1 | − i·9-s + (1.38 − 1.38i)13-s + (1.21 + 1.21i)17-s − 0.742i·29-s + (−0.821 − 0.821i)37-s + 1.24·41-s + i·49-s + (−0.686 + 0.686i)53-s − 1.53·61-s + (−0.585 + 0.585i)73-s − 81-s + 1.69i·89-s + (−0.507 − 0.507i)97-s + 0.199·101-s − 0.574i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37935 - 0.391845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37935 - 0.391845i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-5 + 5i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5 - 5i)T + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 + 4iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (5 + 5i)T + 37iT^{2} \) |
| 41 | \( 1 - 8T + 41T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 + (5 - 5i)T - 53iT^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 12T + 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (5 - 5i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 - 16iT - 89T^{2} \) |
| 97 | \( 1 + (5 + 5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04472555806920005307368319708, −10.38665363389198613782678020822, −9.368931877555665881972871881716, −8.394194096742075503759627841014, −7.61950321962881613564710904487, −6.17528400162867302190580578900, −5.71084731742201172430389379938, −4.00464382900555206770790773095, −3.15925999426796568586280927185, −1.13266468726042336887303247194,
1.61431408663841428470958862339, 3.19380337442781207459228011090, 4.50293949880647670934962873573, 5.52846652566638912601909530456, 6.68928335851737744391590006756, 7.64187653849720920038089449727, 8.629770810801943550226109079514, 9.493423312652212097735151495875, 10.54545353312228005749820967794, 11.34389581752958628359760485054