Properties

Label 2-20e2-1.1-c9-0-76
Degree $2$
Conductor $400$
Sign $-1$
Analytic cond. $206.014$
Root an. cond. $14.3531$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 68·3-s + 1.02e4·7-s − 1.50e4·9-s − 3.91e3·11-s + 1.76e5·13-s − 1.48e5·17-s − 4.99e5·19-s + 6.96e5·21-s − 1.88e6·23-s − 2.36e6·27-s − 9.20e5·29-s − 1.37e6·31-s − 2.66e5·33-s − 5.06e6·37-s + 1.20e7·39-s − 2.41e7·41-s + 2.57e7·43-s − 6.07e7·47-s + 6.46e7·49-s − 1.00e7·51-s − 2.94e7·53-s − 3.39e7·57-s − 5.18e7·59-s + 3.34e7·61-s − 1.54e8·63-s + 1.44e8·67-s − 1.28e8·69-s + ⋯
L(s)  = 1  + 0.484·3-s + 1.61·7-s − 0.765·9-s − 0.0806·11-s + 1.71·13-s − 0.430·17-s − 0.879·19-s + 0.781·21-s − 1.40·23-s − 0.855·27-s − 0.241·29-s − 0.268·31-s − 0.0390·33-s − 0.444·37-s + 0.831·39-s − 1.33·41-s + 1.15·43-s − 1.81·47-s + 1.60·49-s − 0.208·51-s − 0.513·53-s − 0.426·57-s − 0.556·59-s + 0.309·61-s − 1.23·63-s + 0.878·67-s − 0.682·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(206.014\)
Root analytic conductor: \(14.3531\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 400,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 68 T + p^{9} T^{2} \)
7 \( 1 - 1464 p T + p^{9} T^{2} \)
11 \( 1 + 356 p T + p^{9} T^{2} \)
13 \( 1 - 176594 T + p^{9} T^{2} \)
17 \( 1 + 148370 T + p^{9} T^{2} \)
19 \( 1 + 499796 T + p^{9} T^{2} \)
23 \( 1 + 1889768 T + p^{9} T^{2} \)
29 \( 1 + 920898 T + p^{9} T^{2} \)
31 \( 1 + 1379360 T + p^{9} T^{2} \)
37 \( 1 + 5064966 T + p^{9} T^{2} \)
41 \( 1 + 24100758 T + p^{9} T^{2} \)
43 \( 1 - 25785196 T + p^{9} T^{2} \)
47 \( 1 + 60790224 T + p^{9} T^{2} \)
53 \( 1 + 29496214 T + p^{9} T^{2} \)
59 \( 1 + 51819388 T + p^{9} T^{2} \)
61 \( 1 - 33426910 T + p^{9} T^{2} \)
67 \( 1 - 144856196 T + p^{9} T^{2} \)
71 \( 1 + 68397128 T + p^{9} T^{2} \)
73 \( 1 + 168216202 T + p^{9} T^{2} \)
79 \( 1 + 235398736 T + p^{9} T^{2} \)
83 \( 1 + 64639852 T + p^{9} T^{2} \)
89 \( 1 + 78782694 T + p^{9} T^{2} \)
97 \( 1 - 24113566 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.936964084068164053981222241501, −8.381522569593919261405542805575, −7.85270342177465576820148887363, −6.40504493344293593322409991787, −5.52409355203512407991740208171, −4.40434441854084165999833277381, −3.49507929958414777724701350699, −2.13384838825725672514137298813, −1.46049912993644840664976932750, 0, 1.46049912993644840664976932750, 2.13384838825725672514137298813, 3.49507929958414777724701350699, 4.40434441854084165999833277381, 5.52409355203512407991740208171, 6.40504493344293593322409991787, 7.85270342177465576820148887363, 8.381522569593919261405542805575, 8.936964084068164053981222241501

Graph of the $Z$-function along the critical line