Properties

Label 2-20e2-1.1-c9-0-6
Degree $2$
Conductor $400$
Sign $1$
Analytic cond. $206.014$
Root an. cond. $14.3531$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 46·3-s − 1.03e4·7-s − 1.75e4·9-s + 5.56e3·11-s − 4.59e4·13-s + 3.81e5·17-s − 6.10e5·19-s − 4.74e5·21-s − 1.44e6·23-s − 1.71e6·27-s + 5.38e6·29-s − 3.05e6·31-s + 2.56e5·33-s − 1.28e7·37-s − 2.11e6·39-s − 3.37e7·41-s − 3.68e7·43-s − 4.41e7·47-s + 6.61e7·49-s + 1.75e7·51-s − 2.97e7·53-s − 2.80e7·57-s + 6.55e7·59-s + 4.01e7·61-s + 1.81e8·63-s − 1.15e8·67-s − 6.66e7·69-s + ⋯
L(s)  = 1  + 0.327·3-s − 1.62·7-s − 0.892·9-s + 0.114·11-s − 0.446·13-s + 1.10·17-s − 1.07·19-s − 0.532·21-s − 1.07·23-s − 0.620·27-s + 1.41·29-s − 0.593·31-s + 0.0375·33-s − 1.13·37-s − 0.146·39-s − 1.86·41-s − 1.64·43-s − 1.32·47-s + 1.63·49-s + 0.363·51-s − 0.517·53-s − 0.352·57-s + 0.704·59-s + 0.371·61-s + 1.44·63-s − 0.701·67-s − 0.353·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(206.014\)
Root analytic conductor: \(14.3531\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.5745200031\)
\(L(\frac12)\) \(\approx\) \(0.5745200031\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 46 T + p^{9} T^{2} \)
7 \( 1 + 1474 p T + p^{9} T^{2} \)
11 \( 1 - 5568 T + p^{9} T^{2} \)
13 \( 1 + 45986 T + p^{9} T^{2} \)
17 \( 1 - 381318 T + p^{9} T^{2} \)
19 \( 1 + 610460 T + p^{9} T^{2} \)
23 \( 1 + 1447914 T + p^{9} T^{2} \)
29 \( 1 - 5385510 T + p^{9} T^{2} \)
31 \( 1 + 3053852 T + p^{9} T^{2} \)
37 \( 1 + 12889442 T + p^{9} T^{2} \)
41 \( 1 + 33786618 T + p^{9} T^{2} \)
43 \( 1 + 36886234 T + p^{9} T^{2} \)
47 \( 1 + 44163798 T + p^{9} T^{2} \)
53 \( 1 + 29746266 T + p^{9} T^{2} \)
59 \( 1 - 65575380 T + p^{9} T^{2} \)
61 \( 1 - 40183202 T + p^{9} T^{2} \)
67 \( 1 + 115706158 T + p^{9} T^{2} \)
71 \( 1 - 231681708 T + p^{9} T^{2} \)
73 \( 1 + 358691906 T + p^{9} T^{2} \)
79 \( 1 - 486017080 T + p^{9} T^{2} \)
83 \( 1 - 251168886 T + p^{9} T^{2} \)
89 \( 1 + 526039110 T + p^{9} T^{2} \)
97 \( 1 - 1075981438 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.912240990131195365161947093419, −8.813375698463358121120457518124, −8.100130276190783692869721438786, −6.80037080359821038778589486664, −6.17954167848128510929514364520, −5.09290515900693812217626328262, −3.60058048770624251966805666941, −3.07944997431985410324836597794, −1.92116646205910604334400000375, −0.28993492119979290824994227584, 0.28993492119979290824994227584, 1.92116646205910604334400000375, 3.07944997431985410324836597794, 3.60058048770624251966805666941, 5.09290515900693812217626328262, 6.17954167848128510929514364520, 6.80037080359821038778589486664, 8.100130276190783692869721438786, 8.813375698463358121120457518124, 9.912240990131195365161947093419

Graph of the $Z$-function along the critical line