Properties

Label 2-20e2-1.1-c9-0-44
Degree $2$
Conductor $400$
Sign $-1$
Analytic cond. $206.014$
Root an. cond. $14.3531$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 60·3-s − 4.34e3·7-s − 1.60e4·9-s − 9.36e4·11-s + 1.22e4·13-s + 3.19e5·17-s + 5.53e5·19-s + 2.60e5·21-s − 7.12e5·23-s + 2.14e6·27-s + 2.07e6·29-s + 6.42e6·31-s + 5.61e6·33-s + 1.81e7·37-s − 7.34e5·39-s + 9.03e6·41-s + 1.95e7·43-s − 1.84e7·47-s − 2.14e7·49-s − 1.91e7·51-s − 1.02e7·53-s − 3.32e7·57-s − 1.21e8·59-s − 4.59e7·61-s + 6.98e7·63-s + 5.05e7·67-s + 4.27e7·69-s + ⋯
L(s)  = 1  − 0.427·3-s − 0.683·7-s − 0.817·9-s − 1.92·11-s + 0.118·13-s + 0.928·17-s + 0.974·19-s + 0.292·21-s − 0.531·23-s + 0.777·27-s + 0.545·29-s + 1.24·31-s + 0.824·33-s + 1.59·37-s − 0.0508·39-s + 0.499·41-s + 0.874·43-s − 0.552·47-s − 0.532·49-s − 0.396·51-s − 0.178·53-s − 0.416·57-s − 1.30·59-s − 0.424·61-s + 0.558·63-s + 0.306·67-s + 0.227·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(206.014\)
Root analytic conductor: \(14.3531\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 400,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 20 p T + p^{9} T^{2} \)
7 \( 1 + 4344 T + p^{9} T^{2} \)
11 \( 1 + 93644 T + p^{9} T^{2} \)
13 \( 1 - 12242 T + p^{9} T^{2} \)
17 \( 1 - 319598 T + p^{9} T^{2} \)
19 \( 1 - 553516 T + p^{9} T^{2} \)
23 \( 1 + 712936 T + p^{9} T^{2} \)
29 \( 1 - 2075838 T + p^{9} T^{2} \)
31 \( 1 - 6420448 T + p^{9} T^{2} \)
37 \( 1 - 18197754 T + p^{9} T^{2} \)
41 \( 1 - 9033834 T + p^{9} T^{2} \)
43 \( 1 - 19594732 T + p^{9} T^{2} \)
47 \( 1 + 18484176 T + p^{9} T^{2} \)
53 \( 1 + 10255766 T + p^{9} T^{2} \)
59 \( 1 + 121666556 T + p^{9} T^{2} \)
61 \( 1 + 45948962 T + p^{9} T^{2} \)
67 \( 1 - 50535428 T + p^{9} T^{2} \)
71 \( 1 + 267044680 T + p^{9} T^{2} \)
73 \( 1 - 176213366 T + p^{9} T^{2} \)
79 \( 1 - 269685680 T + p^{9} T^{2} \)
83 \( 1 + 2735332 p T + p^{9} T^{2} \)
89 \( 1 - 72141594 T + p^{9} T^{2} \)
97 \( 1 + 228776546 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.504158899055394853288638541792, −8.172041614096452760690485361313, −7.64165625775996329951324001058, −6.25117632419758474142930558428, −5.61160636542449318769422346769, −4.71079964987999635880306594819, −3.14879022623480751603654328610, −2.61684822608904123142848443193, −0.901342663691866464658693680048, 0, 0.901342663691866464658693680048, 2.61684822608904123142848443193, 3.14879022623480751603654328610, 4.71079964987999635880306594819, 5.61160636542449318769422346769, 6.25117632419758474142930558428, 7.64165625775996329951324001058, 8.172041614096452760690485361313, 9.504158899055394853288638541792

Graph of the $Z$-function along the critical line