Properties

Label 2-209-19.7-c1-0-8
Degree 22
Conductor 209209
Sign 0.8360.548i0.836 - 0.548i
Analytic cond. 1.668871.66887
Root an. cond. 1.291841.29184
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.797 + 1.38i)2-s + (−0.583 − 1.01i)3-s + (−0.273 + 0.472i)4-s + (0.206 + 0.357i)5-s + (0.931 − 1.61i)6-s + 2.20·7-s + 2.31·8-s + (0.819 − 1.41i)9-s + (−0.329 + 0.571i)10-s − 11-s + 0.637·12-s + (−2.41 + 4.18i)13-s + (1.75 + 3.04i)14-s + (0.241 − 0.417i)15-s + (2.39 + 4.15i)16-s + (0.827 + 1.43i)17-s + ⋯
L(s)  = 1  + (0.564 + 0.977i)2-s + (−0.336 − 0.583i)3-s + (−0.136 + 0.236i)4-s + (0.0924 + 0.160i)5-s + (0.380 − 0.658i)6-s + 0.833·7-s + 0.820·8-s + (0.273 − 0.472i)9-s + (−0.104 + 0.180i)10-s − 0.301·11-s + 0.183·12-s + (−0.670 + 1.16i)13-s + (0.470 + 0.814i)14-s + (0.0622 − 0.107i)15-s + (0.599 + 1.03i)16-s + (0.200 + 0.347i)17-s + ⋯

Functional equation

Λ(s)=(209s/2ΓC(s)L(s)=((0.8360.548i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.836 - 0.548i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(209s/2ΓC(s+1/2)L(s)=((0.8360.548i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.836 - 0.548i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 209209    =    111911 \cdot 19
Sign: 0.8360.548i0.836 - 0.548i
Analytic conductor: 1.668871.66887
Root analytic conductor: 1.291841.29184
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ209(45,)\chi_{209} (45, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 209, ( :1/2), 0.8360.548i)(2,\ 209,\ (\ :1/2),\ 0.836 - 0.548i)

Particular Values

L(1)L(1) \approx 1.56571+0.467216i1.56571 + 0.467216i
L(12)L(\frac12) \approx 1.56571+0.467216i1.56571 + 0.467216i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1+T 1 + T
19 1+(1.15+4.20i)T 1 + (1.15 + 4.20i)T
good2 1+(0.7971.38i)T+(1+1.73i)T2 1 + (-0.797 - 1.38i)T + (-1 + 1.73i)T^{2}
3 1+(0.583+1.01i)T+(1.5+2.59i)T2 1 + (0.583 + 1.01i)T + (-1.5 + 2.59i)T^{2}
5 1+(0.2060.357i)T+(2.5+4.33i)T2 1 + (-0.206 - 0.357i)T + (-2.5 + 4.33i)T^{2}
7 12.20T+7T2 1 - 2.20T + 7T^{2}
13 1+(2.414.18i)T+(6.511.2i)T2 1 + (2.41 - 4.18i)T + (-6.5 - 11.2i)T^{2}
17 1+(0.8271.43i)T+(8.5+14.7i)T2 1 + (-0.827 - 1.43i)T + (-8.5 + 14.7i)T^{2}
23 1+(2.504.34i)T+(11.519.9i)T2 1 + (2.50 - 4.34i)T + (-11.5 - 19.9i)T^{2}
29 1+(2.48+4.30i)T+(14.525.1i)T2 1 + (-2.48 + 4.30i)T + (-14.5 - 25.1i)T^{2}
31 1+7.24T+31T2 1 + 7.24T + 31T^{2}
37 1+7.83T+37T2 1 + 7.83T + 37T^{2}
41 1+(3.125.41i)T+(20.5+35.5i)T2 1 + (-3.12 - 5.41i)T + (-20.5 + 35.5i)T^{2}
43 1+(2.74+4.75i)T+(21.5+37.2i)T2 1 + (2.74 + 4.75i)T + (-21.5 + 37.2i)T^{2}
47 1+(0.790+1.36i)T+(23.540.7i)T2 1 + (-0.790 + 1.36i)T + (-23.5 - 40.7i)T^{2}
53 1+(6.2010.7i)T+(26.545.8i)T2 1 + (6.20 - 10.7i)T + (-26.5 - 45.8i)T^{2}
59 1+(0.812+1.40i)T+(29.5+51.0i)T2 1 + (0.812 + 1.40i)T + (-29.5 + 51.0i)T^{2}
61 1+(2.464.26i)T+(30.552.8i)T2 1 + (2.46 - 4.26i)T + (-30.5 - 52.8i)T^{2}
67 1+(7.71+13.3i)T+(33.558.0i)T2 1 + (-7.71 + 13.3i)T + (-33.5 - 58.0i)T^{2}
71 1+(6.3010.9i)T+(35.5+61.4i)T2 1 + (-6.30 - 10.9i)T + (-35.5 + 61.4i)T^{2}
73 1+(3.756.50i)T+(36.5+63.2i)T2 1 + (-3.75 - 6.50i)T + (-36.5 + 63.2i)T^{2}
79 1+(3.84+6.65i)T+(39.5+68.4i)T2 1 + (3.84 + 6.65i)T + (-39.5 + 68.4i)T^{2}
83 16.46T+83T2 1 - 6.46T + 83T^{2}
89 1+(1.803.11i)T+(44.577.0i)T2 1 + (1.80 - 3.11i)T + (-44.5 - 77.0i)T^{2}
97 1+(7.4512.9i)T+(48.5+84.0i)T2 1 + (-7.45 - 12.9i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.58923330115669318115418747715, −11.66957175402455332745008778542, −10.69976659721377336668304462445, −9.426505382019407873364562774459, −8.013846793219819220386505709597, −7.10754349892206652072413933812, −6.41224196104063565706180188981, −5.25847666007441476902338718116, −4.22711203434635698606285355393, −1.82544433245107939078958293956, 1.92608041727284611156244102108, 3.45729148815063599369126255051, 4.79772126626815792353780152878, 5.33753302869977487434561358442, 7.38475283442285310925920654224, 8.251314905072405453603287270638, 9.892465193966334030451102846736, 10.61513147438329776032677053764, 11.18203304820951562791066067371, 12.39593502519627087875379823694

Graph of the ZZ-function along the critical line