L(s) = 1 | + (1.00 + 1.74i)2-s + (−1.29 − 2.23i)3-s + (−1.02 + 1.77i)4-s + (−1.77 − 3.07i)5-s + (2.59 − 4.50i)6-s − 4.09·7-s − 0.111·8-s + (−1.82 + 3.16i)9-s + (3.57 − 6.19i)10-s − 11-s + 5.30·12-s + (2.55 − 4.42i)13-s + (−4.12 − 7.14i)14-s + (−4.58 + 7.93i)15-s + (1.94 + 3.36i)16-s + (0.559 + 0.969i)17-s + ⋯ |
L(s) = 1 | + (0.711 + 1.23i)2-s + (−0.744 − 1.29i)3-s + (−0.513 + 0.889i)4-s + (−0.794 − 1.37i)5-s + (1.06 − 1.83i)6-s − 1.54·7-s − 0.0393·8-s + (−0.609 + 1.05i)9-s + (1.13 − 1.95i)10-s − 0.301·11-s + 1.53·12-s + (0.708 − 1.22i)13-s + (−1.10 − 1.91i)14-s + (−1.18 + 2.04i)15-s + (0.485 + 0.841i)16-s + (0.135 + 0.235i)17-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)(0.242+0.970i)Λ(2−s)
Λ(s)=(=(209s/2ΓC(s+1/2)L(s)(0.242+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
209
= 11⋅19
|
Sign: |
0.242+0.970i
|
Analytic conductor: |
1.66887 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ209(45,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 209, ( :1/2), 0.242+0.970i)
|
Particular Values
L(1) |
≈ |
0.711288−0.555598i |
L(21) |
≈ |
0.711288−0.555598i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+T |
| 19 | 1+(−4.34−0.288i)T |
good | 2 | 1+(−1.00−1.74i)T+(−1+1.73i)T2 |
| 3 | 1+(1.29+2.23i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1.77+3.07i)T+(−2.5+4.33i)T2 |
| 7 | 1+4.09T+7T2 |
| 13 | 1+(−2.55+4.42i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−0.559−0.969i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−0.629+1.09i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.20+5.55i)T+(−14.5−25.1i)T2 |
| 31 | 1+0.563T+31T2 |
| 37 | 1+1.00T+37T2 |
| 41 | 1+(2.90+5.02i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.45+5.98i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.17+2.03i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−6.48+11.2i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3.10−5.37i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.68−4.64i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.01−8.69i)T+(−33.5−58.0i)T2 |
| 71 | 1+(0.778+1.34i)T+(−35.5+61.4i)T2 |
| 73 | 1+(3.65+6.32i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7.30−12.6i)T+(−39.5+68.4i)T2 |
| 83 | 1−3.84T+83T2 |
| 89 | 1+(−0.742+1.28i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−8.33−14.4i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50297726101297305571511755911, −11.87483760312201092792962192598, −10.25640477507787364075172487618, −8.615146900706273945723489935305, −7.77407574578923115205169856717, −6.92075366123956759879878028819, −5.91172210847437745618766481465, −5.28220824918710337904748437548, −3.69711655077345180306563399532, −0.68879155200787775693656748897,
3.11481419293209081964884584851, 3.55068197365047054171469118555, 4.67110312099220426664490383384, 6.15168597703119968137403203861, 7.21216651807741353374990309190, 9.363342330556938292907271739234, 10.12431394420828933306305405309, 10.82465159777444628898558580128, 11.46783059890474748169995753284, 12.15164119525714233589130289284