L(s) = 1 | + (1.00 + 1.74i)2-s + (−1.29 − 2.23i)3-s + (−1.02 + 1.77i)4-s + (−1.77 − 3.07i)5-s + (2.59 − 4.50i)6-s − 4.09·7-s − 0.111·8-s + (−1.82 + 3.16i)9-s + (3.57 − 6.19i)10-s − 11-s + 5.30·12-s + (2.55 − 4.42i)13-s + (−4.12 − 7.14i)14-s + (−4.58 + 7.93i)15-s + (1.94 + 3.36i)16-s + (0.559 + 0.969i)17-s + ⋯ |
L(s) = 1 | + (0.711 + 1.23i)2-s + (−0.744 − 1.29i)3-s + (−0.513 + 0.889i)4-s + (−0.794 − 1.37i)5-s + (1.06 − 1.83i)6-s − 1.54·7-s − 0.0393·8-s + (−0.609 + 1.05i)9-s + (1.13 − 1.95i)10-s − 0.301·11-s + 1.53·12-s + (0.708 − 1.22i)13-s + (−1.10 − 1.91i)14-s + (−1.18 + 2.04i)15-s + (0.485 + 0.841i)16-s + (0.135 + 0.235i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.711288 - 0.555598i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.711288 - 0.555598i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + T \) |
| 19 | \( 1 + (-4.34 - 0.288i)T \) |
good | 2 | \( 1 + (-1.00 - 1.74i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.29 + 2.23i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.77 + 3.07i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 4.09T + 7T^{2} \) |
| 13 | \( 1 + (-2.55 + 4.42i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.559 - 0.969i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.629 + 1.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.20 + 5.55i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 0.563T + 31T^{2} \) |
| 37 | \( 1 + 1.00T + 37T^{2} \) |
| 41 | \( 1 + (2.90 + 5.02i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 + 5.98i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.17 + 2.03i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.48 + 11.2i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.10 - 5.37i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.68 - 4.64i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.01 - 8.69i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.778 + 1.34i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3.65 + 6.32i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.30 - 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.84T + 83T^{2} \) |
| 89 | \( 1 + (-0.742 + 1.28i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.33 - 14.4i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50297726101297305571511755911, −11.87483760312201092792962192598, −10.25640477507787364075172487618, −8.615146900706273945723489935305, −7.77407574578923115205169856717, −6.92075366123956759879878028819, −5.91172210847437745618766481465, −5.28220824918710337904748437548, −3.69711655077345180306563399532, −0.68879155200787775693656748897,
3.11481419293209081964884584851, 3.55068197365047054171469118555, 4.67110312099220426664490383384, 6.15168597703119968137403203861, 7.21216651807741353374990309190, 9.363342330556938292907271739234, 10.12431394420828933306305405309, 10.82465159777444628898558580128, 11.46783059890474748169995753284, 12.15164119525714233589130289284