L(s) = 1 | + (1.31 − 2.28i)2-s + (0.631 − 1.09i)3-s + (−2.47 − 4.28i)4-s + (−0.759 + 1.31i)5-s + (−1.66 − 2.88i)6-s + 1.94·7-s − 7.77·8-s + (0.702 + 1.21i)9-s + (2.00 + 3.46i)10-s − 11-s − 6.25·12-s + (1.57 + 2.72i)13-s + (2.56 − 4.44i)14-s + (0.959 + 1.66i)15-s + (−5.30 + 9.18i)16-s + (0.682 − 1.18i)17-s + ⋯ |
L(s) = 1 | + (0.932 − 1.61i)2-s + (0.364 − 0.631i)3-s + (−1.23 − 2.14i)4-s + (−0.339 + 0.588i)5-s + (−0.679 − 1.17i)6-s + 0.735·7-s − 2.75·8-s + (0.234 + 0.405i)9-s + (0.633 + 1.09i)10-s − 0.301·11-s − 1.80·12-s + (0.436 + 0.756i)13-s + (0.685 − 1.18i)14-s + (0.247 + 0.429i)15-s + (−1.32 + 2.29i)16-s + (0.165 − 0.286i)17-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)(−0.839+0.542i)Λ(2−s)
Λ(s)=(=(209s/2ΓC(s+1/2)L(s)(−0.839+0.542i)Λ(1−s)
Degree: |
2 |
Conductor: |
209
= 11⋅19
|
Sign: |
−0.839+0.542i
|
Analytic conductor: |
1.66887 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ209(144,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 209, ( :1/2), −0.839+0.542i)
|
Particular Values
L(1) |
≈ |
0.545549−1.84959i |
L(21) |
≈ |
0.545549−1.84959i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+T |
| 19 | 1+(3.37+2.76i)T |
good | 2 | 1+(−1.31+2.28i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.631+1.09i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.759−1.31i)T+(−2.5−4.33i)T2 |
| 7 | 1−1.94T+7T2 |
| 13 | 1+(−1.57−2.72i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.682+1.18i)T+(−8.5−14.7i)T2 |
| 23 | 1+(0.194+0.337i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.909+1.57i)T+(−14.5+25.1i)T2 |
| 31 | 1+7.22T+31T2 |
| 37 | 1−10.8T+37T2 |
| 41 | 1+(5.02−8.69i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.249+0.431i)T+(−21.5−37.2i)T2 |
| 47 | 1+(5.73+9.93i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.490+0.849i)T+(−26.5+45.8i)T2 |
| 59 | 1+(2.98−5.17i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.22−3.85i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.90−11.9i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.53−6.11i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−4.27+7.39i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−7.58+13.1i)T+(−39.5−68.4i)T2 |
| 83 | 1−7.70T+83T2 |
| 89 | 1+(0.833+1.44i)T+(−44.5+77.0i)T2 |
| 97 | 1+(8.72−15.1i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.86261274947850173889958684614, −11.20774388977915604109300089092, −10.56757022337613064817594335859, −9.323869190216158921255019613953, −8.054386482025759236674284035419, −6.72433135493316502458404438548, −5.15075898883313816316522547562, −4.11189680633162856379740932501, −2.74266725772947154777400046843, −1.66086715866769182826346391818,
3.54504113836738133443230260641, 4.42642598237463640529431996861, 5.34986550424181611025106557601, 6.47546339454052288909248350123, 7.88494780418990910548984297064, 8.322130661772869500969674245713, 9.383380137576990565149768541548, 10.89427921606373653120011526202, 12.46500432071863253801361239391, 12.81907311483737245924164326380