L(s) = 1 | + (−0.0694 + 0.120i)2-s + (0.748 − 1.29i)3-s + (0.990 + 1.71i)4-s + (1.75 − 3.04i)5-s + (0.103 + 0.179i)6-s − 1.46·7-s − 0.552·8-s + (0.379 + 0.657i)9-s + (0.244 + 0.422i)10-s − 11-s + 2.96·12-s + (−1.19 − 2.07i)13-s + (0.101 − 0.176i)14-s + (−2.63 − 4.55i)15-s + (−1.94 + 3.36i)16-s + (1.62 − 2.80i)17-s + ⋯ |
L(s) = 1 | + (−0.0490 + 0.0850i)2-s + (0.432 − 0.748i)3-s + (0.495 + 0.857i)4-s + (0.786 − 1.36i)5-s + (0.0424 + 0.0734i)6-s − 0.555·7-s − 0.195·8-s + (0.126 + 0.219i)9-s + (0.0772 + 0.133i)10-s − 0.301·11-s + 0.855·12-s + (−0.331 − 0.574i)13-s + (0.0272 − 0.0472i)14-s + (−0.679 − 1.17i)15-s + (−0.485 + 0.841i)16-s + (0.392 − 0.680i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.845 + 0.534i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.845 + 0.534i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47345 - 0.426477i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47345 - 0.426477i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + T \) |
| 19 | \( 1 + (1.08 - 4.22i)T \) |
good | 2 | \( 1 + (0.0694 - 0.120i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.748 + 1.29i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.75 + 3.04i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 1.46T + 7T^{2} \) |
| 13 | \( 1 + (1.19 + 2.07i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.62 + 2.80i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-3.69 - 6.39i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.20 + 5.55i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.866T + 31T^{2} \) |
| 37 | \( 1 + 2.78T + 37T^{2} \) |
| 41 | \( 1 + (4.92 - 8.53i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.65 - 6.32i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.67 + 2.90i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.89 - 3.27i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.20 - 7.27i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.718 - 1.24i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.24 + 5.61i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.70 + 2.95i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.40 - 2.43i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.85 + 15.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.7T + 83T^{2} \) |
| 89 | \( 1 + (6.43 + 11.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.86 + 13.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56195959610403738879505766991, −11.71909070172864031343387838052, −10.12107715390254869744165541683, −9.182152490816246564853076951052, −8.101510075364194136527822605373, −7.50777599526868171275936855449, −6.16596556918202143820499902329, −4.93735901672846743512611870063, −3.12225138242825851872560699139, −1.70939794489446019063378583610,
2.29304530911603406488447543962, 3.38533802087740995271757086415, 5.13670549679476856935241465549, 6.55547250320376770373367772903, 6.87737467881718996342260341429, 8.938611812982199169288625158907, 9.772808063422296310345557484253, 10.46231570414199819393008184762, 10.97267591150302607523758608945, 12.43758122197334734254146990657