L(s) = 1 | + (−0.0694 + 0.120i)2-s + (0.748 − 1.29i)3-s + (0.990 + 1.71i)4-s + (1.75 − 3.04i)5-s + (0.103 + 0.179i)6-s − 1.46·7-s − 0.552·8-s + (0.379 + 0.657i)9-s + (0.244 + 0.422i)10-s − 11-s + 2.96·12-s + (−1.19 − 2.07i)13-s + (0.101 − 0.176i)14-s + (−2.63 − 4.55i)15-s + (−1.94 + 3.36i)16-s + (1.62 − 2.80i)17-s + ⋯ |
L(s) = 1 | + (−0.0490 + 0.0850i)2-s + (0.432 − 0.748i)3-s + (0.495 + 0.857i)4-s + (0.786 − 1.36i)5-s + (0.0424 + 0.0734i)6-s − 0.555·7-s − 0.195·8-s + (0.126 + 0.219i)9-s + (0.0772 + 0.133i)10-s − 0.301·11-s + 0.855·12-s + (−0.331 − 0.574i)13-s + (0.0272 − 0.0472i)14-s + (−0.679 − 1.17i)15-s + (−0.485 + 0.841i)16-s + (0.392 − 0.680i)17-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)(0.845+0.534i)Λ(2−s)
Λ(s)=(=(209s/2ΓC(s+1/2)L(s)(0.845+0.534i)Λ(1−s)
Degree: |
2 |
Conductor: |
209
= 11⋅19
|
Sign: |
0.845+0.534i
|
Analytic conductor: |
1.66887 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ209(144,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 209, ( :1/2), 0.845+0.534i)
|
Particular Values
L(1) |
≈ |
1.47345−0.426477i |
L(21) |
≈ |
1.47345−0.426477i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+T |
| 19 | 1+(1.08−4.22i)T |
good | 2 | 1+(0.0694−0.120i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.748+1.29i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.75+3.04i)T+(−2.5−4.33i)T2 |
| 7 | 1+1.46T+7T2 |
| 13 | 1+(1.19+2.07i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1.62+2.80i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−3.69−6.39i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.20+5.55i)T+(−14.5+25.1i)T2 |
| 31 | 1−0.866T+31T2 |
| 37 | 1+2.78T+37T2 |
| 41 | 1+(4.92−8.53i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.65−6.32i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.67+2.90i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.89−3.27i)T+(−26.5+45.8i)T2 |
| 59 | 1+(4.20−7.27i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.718−1.24i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.24+5.61i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1.70+2.95i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.40−2.43i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−8.85+15.3i)T+(−39.5−68.4i)T2 |
| 83 | 1−17.7T+83T2 |
| 89 | 1+(6.43+11.1i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−7.86+13.6i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.56195959610403738879505766991, −11.71909070172864031343387838052, −10.12107715390254869744165541683, −9.182152490816246564853076951052, −8.101510075364194136527822605373, −7.50777599526868171275936855449, −6.16596556918202143820499902329, −4.93735901672846743512611870063, −3.12225138242825851872560699139, −1.70939794489446019063378583610,
2.29304530911603406488447543962, 3.38533802087740995271757086415, 5.13670549679476856935241465549, 6.55547250320376770373367772903, 6.87737467881718996342260341429, 8.938611812982199169288625158907, 9.772808063422296310345557484253, 10.46231570414199819393008184762, 10.97267591150302607523758608945, 12.43758122197334734254146990657