L(s) = 1 | + (−0.918 + 1.59i)2-s + (−1.56 + 2.70i)3-s + (−0.688 − 1.19i)4-s + (1.63 − 2.83i)5-s + (−2.87 − 4.97i)6-s − 3.63·7-s − 1.14·8-s + (−3.38 − 5.87i)9-s + (3.00 + 5.20i)10-s − 11-s + 4.30·12-s + (0.224 + 0.388i)13-s + (3.33 − 5.77i)14-s + (5.11 + 8.85i)15-s + (2.42 − 4.20i)16-s + (−2.11 + 3.66i)17-s + ⋯ |
L(s) = 1 | + (−0.649 + 1.12i)2-s + (−0.902 + 1.56i)3-s + (−0.344 − 0.595i)4-s + (0.731 − 1.26i)5-s + (−1.17 − 2.03i)6-s − 1.37·7-s − 0.405·8-s + (−1.12 − 1.95i)9-s + (0.949 + 1.64i)10-s − 0.301·11-s + 1.24·12-s + (0.0621 + 0.107i)13-s + (0.891 − 1.54i)14-s + (1.32 + 2.28i)15-s + (0.607 − 1.05i)16-s + (−0.512 + 0.887i)17-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)(0.120+0.992i)Λ(2−s)
Λ(s)=(=(209s/2ΓC(s+1/2)L(s)(0.120+0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
209
= 11⋅19
|
Sign: |
0.120+0.992i
|
Analytic conductor: |
1.66887 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ209(144,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 209, ( :1/2), 0.120+0.992i)
|
Particular Values
L(1) |
≈ |
0.105934−0.0938910i |
L(21) |
≈ |
0.105934−0.0938910i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+T |
| 19 | 1+(3.96−1.82i)T |
good | 2 | 1+(0.918−1.59i)T+(−1−1.73i)T2 |
| 3 | 1+(1.56−2.70i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.63+2.83i)T+(−2.5−4.33i)T2 |
| 7 | 1+3.63T+7T2 |
| 13 | 1+(−0.224−0.388i)T+(−6.5+11.2i)T2 |
| 17 | 1+(2.11−3.66i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−0.506−0.877i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.37−5.84i)T+(−14.5+25.1i)T2 |
| 31 | 1+7.00T+31T2 |
| 37 | 1+10.8T+37T2 |
| 41 | 1+(−0.641+1.11i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.08+3.60i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.38−5.85i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.19+2.06i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−4.75+8.23i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.33+4.03i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.718−1.24i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.28−9.14i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.32−2.29i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.230+0.399i)T+(−39.5−68.4i)T2 |
| 83 | 1+3.09T+83T2 |
| 89 | 1+(−2.31−4.00i)T+(−44.5+77.0i)T2 |
| 97 | 1+(4.62−8.01i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.88425339988613467635774702845, −12.30823223822713869546808292250, −10.70152489036232728213168826346, −9.928781232225153702679992347634, −9.105687346626292575085285555703, −8.661989602240053045730393880133, −6.67737398214200015986501890388, −5.86381448876870529883472179922, −5.12604767183538157008783791667, −3.70402230011527282079545244075,
0.15212101577789393005132223629, 2.13276446198460661754991724304, 2.93426154206872820183079901465, 5.83621902594906652700621969632, 6.52856633379932823753212627282, 7.22769160759113462316127147029, 8.896428051201244487045764871720, 10.11201559061454038498668570335, 10.71510828655367504241868430420, 11.53781679538705677767299210769