L(s) = 1 | + (1.38 − 0.285i)2-s + (−1.13 − 1.13i)3-s + (1.83 − 0.791i)4-s + (0.631 − 0.631i)5-s + (−1.90 − 1.25i)6-s + 0.0885i·7-s + (2.31 − 1.62i)8-s − 0.401i·9-s + (0.694 − 1.05i)10-s + (−2.57 + 2.57i)11-s + (−2.99 − 1.19i)12-s + (−0.707 − 0.707i)13-s + (0.0253 + 0.122i)14-s − 1.44·15-s + (2.74 − 2.90i)16-s + 5.17·17-s + ⋯ |
L(s) = 1 | + (0.979 − 0.202i)2-s + (−0.658 − 0.658i)3-s + (0.918 − 0.395i)4-s + (0.282 − 0.282i)5-s + (−0.777 − 0.511i)6-s + 0.0334i·7-s + (0.819 − 0.573i)8-s − 0.133i·9-s + (0.219 − 0.333i)10-s + (−0.776 + 0.776i)11-s + (−0.864 − 0.343i)12-s + (−0.196 − 0.196i)13-s + (0.00676 + 0.0327i)14-s − 0.371·15-s + (0.686 − 0.727i)16-s + 1.25·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 + 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.408 + 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.49772 - 0.970082i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.49772 - 0.970082i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.285i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (1.13 + 1.13i)T + 3iT^{2} \) |
| 5 | \( 1 + (-0.631 + 0.631i)T - 5iT^{2} \) |
| 7 | \( 1 - 0.0885iT - 7T^{2} \) |
| 11 | \( 1 + (2.57 - 2.57i)T - 11iT^{2} \) |
| 17 | \( 1 - 5.17T + 17T^{2} \) |
| 19 | \( 1 + (-0.0221 - 0.0221i)T + 19iT^{2} \) |
| 23 | \( 1 - 3.75iT - 23T^{2} \) |
| 29 | \( 1 + (-1.82 - 1.82i)T + 29iT^{2} \) |
| 31 | \( 1 + 1.92T + 31T^{2} \) |
| 37 | \( 1 + (6.60 - 6.60i)T - 37iT^{2} \) |
| 41 | \( 1 - 0.269iT - 41T^{2} \) |
| 43 | \( 1 + (1.21 - 1.21i)T - 43iT^{2} \) |
| 47 | \( 1 - 0.655T + 47T^{2} \) |
| 53 | \( 1 + (2.80 - 2.80i)T - 53iT^{2} \) |
| 59 | \( 1 + (-10.5 + 10.5i)T - 59iT^{2} \) |
| 61 | \( 1 + (7.11 + 7.11i)T + 61iT^{2} \) |
| 67 | \( 1 + (5.59 + 5.59i)T + 67iT^{2} \) |
| 71 | \( 1 - 3.73iT - 71T^{2} \) |
| 73 | \( 1 + 9.03iT - 73T^{2} \) |
| 79 | \( 1 + 0.755T + 79T^{2} \) |
| 83 | \( 1 + (7.09 + 7.09i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.62iT - 89T^{2} \) |
| 97 | \( 1 + 13.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36530995792825745959218830483, −11.63642083032614508584889996739, −10.49790883652204545269611639407, −9.569534853124307341223738809018, −7.73701755307022219500299287784, −6.90129630010752978357827425097, −5.70424703904923571869299565207, −5.02917775551823680159633903394, −3.31701629696266404771706285619, −1.56572484556364060953201780510,
2.63423615722940921984787000870, 4.08688678194071117675480809482, 5.30516650975929408865048302071, 5.91594360258451181404415098462, 7.25784036872324567993018279533, 8.390323418363113664412334059554, 10.19679725333630530192086559228, 10.63198343553132494687226941336, 11.66097684990094166610387581373, 12.52872754661743385547745849814