L(s) = 1 | + (−0.780 − 1.35i)3-s + 0.561·5-s + (0.780 − 1.35i)7-s + (0.280 − 0.486i)9-s + (−0.780 − 1.35i)11-s + (−2.84 − 2.21i)13-s + (−0.438 − 0.759i)15-s + (2.5 − 4.33i)17-s + (0.780 − 1.35i)19-s − 2.43·21-s + (4.34 + 7.52i)23-s − 4.68·25-s − 5.56·27-s + (2.5 + 4.33i)29-s + 8·31-s + ⋯ |
L(s) = 1 | + (−0.450 − 0.780i)3-s + 0.251·5-s + (0.295 − 0.511i)7-s + (0.0935 − 0.162i)9-s + (−0.235 − 0.407i)11-s + (−0.788 − 0.615i)13-s + (−0.113 − 0.196i)15-s + (0.606 − 1.05i)17-s + (0.179 − 0.310i)19-s − 0.532·21-s + (0.905 + 1.56i)23-s − 0.936·25-s − 1.07·27-s + (0.464 + 0.804i)29-s + 1.43·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.128 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.128 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.803102 - 0.705590i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.803102 - 0.705590i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (2.84 + 2.21i)T \) |
good | 3 | \( 1 + (0.780 + 1.35i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.561T + 5T^{2} \) |
| 7 | \( 1 + (-0.780 + 1.35i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.780 + 1.35i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.5 + 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.780 + 1.35i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.34 - 7.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.62 - 6.27i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.21 - 2.11i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 4T + 47T^{2} \) |
| 53 | \( 1 - 8.56T + 53T^{2} \) |
| 59 | \( 1 + (-0.780 + 1.35i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.62 - 8.00i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.78 + 11.7i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.34 - 4.05i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 13.6T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 14.2T + 83T^{2} \) |
| 89 | \( 1 + (1.34 + 2.32i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.90 + 15.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06239437630389849899639796528, −11.45741161185124669555293981377, −10.22045217581594147603991139179, −9.333600285491245803022014415242, −7.77525809220908633429278080640, −7.19778579974932822272382337339, −5.94823987104341799490845436024, −4.88101596639276508057014703057, −3.05398872855925400530140787959, −1.06963595628060547927690318413,
2.26865970067043317401128083191, 4.21314387086822492373958705255, 5.11400429893814385374725378895, 6.21574665652626670462219444635, 7.62600854714932084000845742647, 8.762958235711035295604279882441, 9.988675822597781442327212172118, 10.41313488751471618930380456142, 11.67171134290994862471002697089, 12.39425756204273551798662772128