Properties

Label 2-207-23.22-c6-0-31
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $47.6211$
Root an. cond. $6.90081$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·2-s − 15·4-s − 553·8-s + 1.08e3·13-s − 2.91e3·16-s + 1.21e4·23-s + 1.56e4·25-s + 7.57e3·26-s − 3.07e4·29-s + 5.87e4·31-s + 1.50e4·32-s − 4.36e4·41-s + 8.51e4·46-s + 2.05e5·47-s + 1.17e5·49-s + 1.09e5·50-s − 1.62e4·52-s − 2.15e5·58-s + 2.53e5·59-s + 4.11e5·62-s + 2.91e5·64-s − 6.67e5·71-s + 7.25e5·73-s − 3.05e5·82-s − 1.82e5·92-s + 1.43e6·94-s + 8.23e5·98-s + ⋯
L(s)  = 1  + 7/8·2-s − 0.234·4-s − 1.08·8-s + 0.492·13-s − 0.710·16-s + 23-s + 25-s + 0.430·26-s − 1.26·29-s + 1.97·31-s + 0.458·32-s − 0.633·41-s + 7/8·46-s + 1.97·47-s + 49-s + 7/8·50-s − 0.115·52-s − 1.10·58-s + 1.23·59-s + 1.72·62-s + 1.11·64-s − 1.86·71-s + 1.86·73-s − 0.553·82-s − 0.234·92-s + 1.73·94-s + 7/8·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(47.6211\)
Root analytic conductor: \(6.90081\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{207} (91, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(2.691305730\)
\(L(\frac12)\) \(\approx\) \(2.691305730\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 - p^{3} T \)
good2 \( 1 - 7 T + p^{6} T^{2} \)
5 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
7 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
11 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
13 \( 1 - 1082 T + p^{6} T^{2} \)
17 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
19 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
29 \( 1 + 30746 T + p^{6} T^{2} \)
31 \( 1 - 58754 T + p^{6} T^{2} \)
37 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
41 \( 1 + 43634 T + p^{6} T^{2} \)
43 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
47 \( 1 - 205342 T + p^{6} T^{2} \)
53 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
59 \( 1 - 253942 T + p^{6} T^{2} \)
61 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
67 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
71 \( 1 + 667154 T + p^{6} T^{2} \)
73 \( 1 - 725042 T + p^{6} T^{2} \)
79 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.54716265197296038714606853706, −10.45554556745774000630636596661, −9.237354197399198739775347048622, −8.452792376307919635516206183209, −7.01084387251819033234980784863, −5.89538152077761041911763273143, −4.90776775002447377488476556734, −3.85443700897885935858428715053, −2.71077784958008177488851218020, −0.831458597353747937277135148967, 0.831458597353747937277135148967, 2.71077784958008177488851218020, 3.85443700897885935858428715053, 4.90776775002447377488476556734, 5.89538152077761041911763273143, 7.01084387251819033234980784863, 8.452792376307919635516206183209, 9.237354197399198739775347048622, 10.45554556745774000630636596661, 11.54716265197296038714606853706

Graph of the $Z$-function along the critical line