L(s) = 1 | + 7·2-s − 15·4-s − 553·8-s + 1.08e3·13-s − 2.91e3·16-s + 1.21e4·23-s + 1.56e4·25-s + 7.57e3·26-s − 3.07e4·29-s + 5.87e4·31-s + 1.50e4·32-s − 4.36e4·41-s + 8.51e4·46-s + 2.05e5·47-s + 1.17e5·49-s + 1.09e5·50-s − 1.62e4·52-s − 2.15e5·58-s + 2.53e5·59-s + 4.11e5·62-s + 2.91e5·64-s − 6.67e5·71-s + 7.25e5·73-s − 3.05e5·82-s − 1.82e5·92-s + 1.43e6·94-s + 8.23e5·98-s + ⋯ |
L(s) = 1 | + 7/8·2-s − 0.234·4-s − 1.08·8-s + 0.492·13-s − 0.710·16-s + 23-s + 25-s + 0.430·26-s − 1.26·29-s + 1.97·31-s + 0.458·32-s − 0.633·41-s + 7/8·46-s + 1.97·47-s + 49-s + 7/8·50-s − 0.115·52-s − 1.10·58-s + 1.23·59-s + 1.72·62-s + 1.11·64-s − 1.86·71-s + 1.86·73-s − 0.553·82-s − 0.234·92-s + 1.73·94-s + 7/8·98-s + ⋯ |
Λ(s)=(=(207s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(207s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
207
= 32⋅23
|
Sign: |
1
|
Analytic conductor: |
47.6211 |
Root analytic conductor: |
6.90081 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ207(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 207, ( :3), 1)
|
Particular Values
L(27) |
≈ |
2.691305730 |
L(21) |
≈ |
2.691305730 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 23 | 1−p3T |
good | 2 | 1−7T+p6T2 |
| 5 | (1−p3T)(1+p3T) |
| 7 | (1−p3T)(1+p3T) |
| 11 | (1−p3T)(1+p3T) |
| 13 | 1−1082T+p6T2 |
| 17 | (1−p3T)(1+p3T) |
| 19 | (1−p3T)(1+p3T) |
| 29 | 1+30746T+p6T2 |
| 31 | 1−58754T+p6T2 |
| 37 | (1−p3T)(1+p3T) |
| 41 | 1+43634T+p6T2 |
| 43 | (1−p3T)(1+p3T) |
| 47 | 1−205342T+p6T2 |
| 53 | (1−p3T)(1+p3T) |
| 59 | 1−253942T+p6T2 |
| 61 | (1−p3T)(1+p3T) |
| 67 | (1−p3T)(1+p3T) |
| 71 | 1+667154T+p6T2 |
| 73 | 1−725042T+p6T2 |
| 79 | (1−p3T)(1+p3T) |
| 83 | (1−p3T)(1+p3T) |
| 89 | (1−p3T)(1+p3T) |
| 97 | (1−p3T)(1+p3T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54716265197296038714606853706, −10.45554556745774000630636596661, −9.237354197399198739775347048622, −8.452792376307919635516206183209, −7.01084387251819033234980784863, −5.89538152077761041911763273143, −4.90776775002447377488476556734, −3.85443700897885935858428715053, −2.71077784958008177488851218020, −0.831458597353747937277135148967,
0.831458597353747937277135148967, 2.71077784958008177488851218020, 3.85443700897885935858428715053, 4.90776775002447377488476556734, 5.89538152077761041911763273143, 7.01084387251819033234980784863, 8.452792376307919635516206183209, 9.237354197399198739775347048622, 10.45554556745774000630636596661, 11.54716265197296038714606853706