Properties

Label 2-2057-1.1-c3-0-132
Degree $2$
Conductor $2057$
Sign $1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.58·2-s + 1.54·3-s + 23.1·4-s + 18.5·5-s − 8.62·6-s + 4.56·7-s − 84.6·8-s − 24.6·9-s − 103.·10-s + 35.8·12-s − 29.4·13-s − 25.4·14-s + 28.5·15-s + 287.·16-s + 17·17-s + 137.·18-s − 138.·19-s + 428.·20-s + 7.05·21-s − 13.3·23-s − 130.·24-s + 217.·25-s + 164.·26-s − 79.7·27-s + 105.·28-s + 159.·29-s − 159.·30-s + ⋯
L(s)  = 1  − 1.97·2-s + 0.297·3-s + 2.89·4-s + 1.65·5-s − 0.587·6-s + 0.246·7-s − 3.74·8-s − 0.911·9-s − 3.26·10-s + 0.861·12-s − 0.628·13-s − 0.486·14-s + 0.492·15-s + 4.49·16-s + 0.242·17-s + 1.79·18-s − 1.67·19-s + 4.79·20-s + 0.0732·21-s − 0.121·23-s − 1.11·24-s + 1.73·25-s + 1.23·26-s − 0.568·27-s + 0.713·28-s + 1.01·29-s − 0.971·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.071192199\)
\(L(\frac12)\) \(\approx\) \(1.071192199\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 - 17T \)
good2 \( 1 + 5.58T + 8T^{2} \)
3 \( 1 - 1.54T + 27T^{2} \)
5 \( 1 - 18.5T + 125T^{2} \)
7 \( 1 - 4.56T + 343T^{2} \)
13 \( 1 + 29.4T + 2.19e3T^{2} \)
19 \( 1 + 138.T + 6.85e3T^{2} \)
23 \( 1 + 13.3T + 1.21e4T^{2} \)
29 \( 1 - 159.T + 2.43e4T^{2} \)
31 \( 1 + 113.T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 - 126.T + 6.89e4T^{2} \)
43 \( 1 - 207.T + 7.95e4T^{2} \)
47 \( 1 + 165.T + 1.03e5T^{2} \)
53 \( 1 + 91.6T + 1.48e5T^{2} \)
59 \( 1 - 292.T + 2.05e5T^{2} \)
61 \( 1 + 590.T + 2.26e5T^{2} \)
67 \( 1 - 407.T + 3.00e5T^{2} \)
71 \( 1 + 170.T + 3.57e5T^{2} \)
73 \( 1 - 565.T + 3.89e5T^{2} \)
79 \( 1 - 1.37e3T + 4.93e5T^{2} \)
83 \( 1 + 504.T + 5.71e5T^{2} \)
89 \( 1 - 859.T + 7.04e5T^{2} \)
97 \( 1 - 1.90e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.872274475964119454049493915450, −8.307919553517975387761434040904, −7.48291844137311129455012058264, −6.42717363726054484044864578989, −6.13264690215345408477160148390, −5.12602570355234174578995659118, −3.15661453366156920013950207932, −2.22305418925813953562393243170, −1.90433196941314760076596613834, −0.60089195010812185973329463405, 0.60089195010812185973329463405, 1.90433196941314760076596613834, 2.22305418925813953562393243170, 3.15661453366156920013950207932, 5.12602570355234174578995659118, 6.13264690215345408477160148390, 6.42717363726054484044864578989, 7.48291844137311129455012058264, 8.307919553517975387761434040904, 8.872274475964119454049493915450

Graph of the $Z$-function along the critical line