Properties

Label 2-2057-1.1-c3-0-118
Degree $2$
Conductor $2057$
Sign $1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.79·2-s − 4.86·3-s − 0.165·4-s + 17.2·5-s + 13.6·6-s − 32.4·7-s + 22.8·8-s − 3.35·9-s − 48.2·10-s + 0.807·12-s + 78.3·13-s + 90.7·14-s − 83.8·15-s − 62.6·16-s − 17·17-s + 9.38·18-s + 90.7·19-s − 2.86·20-s + 157.·21-s − 44.1·23-s − 111.·24-s + 172.·25-s − 219.·26-s + 147.·27-s + 5.38·28-s − 98.3·29-s + 234.·30-s + ⋯
L(s)  = 1  − 0.989·2-s − 0.935·3-s − 0.0207·4-s + 1.54·5-s + 0.926·6-s − 1.75·7-s + 1.01·8-s − 0.124·9-s − 1.52·10-s + 0.0194·12-s + 1.67·13-s + 1.73·14-s − 1.44·15-s − 0.978·16-s − 0.242·17-s + 0.122·18-s + 1.09·19-s − 0.0319·20-s + 1.63·21-s − 0.399·23-s − 0.945·24-s + 1.37·25-s − 1.65·26-s + 1.05·27-s + 0.0363·28-s − 0.630·29-s + 1.42·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8333894202\)
\(L(\frac12)\) \(\approx\) \(0.8333894202\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 + 2.79T + 8T^{2} \)
3 \( 1 + 4.86T + 27T^{2} \)
5 \( 1 - 17.2T + 125T^{2} \)
7 \( 1 + 32.4T + 343T^{2} \)
13 \( 1 - 78.3T + 2.19e3T^{2} \)
19 \( 1 - 90.7T + 6.85e3T^{2} \)
23 \( 1 + 44.1T + 1.21e4T^{2} \)
29 \( 1 + 98.3T + 2.43e4T^{2} \)
31 \( 1 - 262.T + 2.97e4T^{2} \)
37 \( 1 - 106.T + 5.06e4T^{2} \)
41 \( 1 + 394.T + 6.89e4T^{2} \)
43 \( 1 - 281.T + 7.95e4T^{2} \)
47 \( 1 - 239.T + 1.03e5T^{2} \)
53 \( 1 + 517.T + 1.48e5T^{2} \)
59 \( 1 - 545.T + 2.05e5T^{2} \)
61 \( 1 + 219.T + 2.26e5T^{2} \)
67 \( 1 - 111.T + 3.00e5T^{2} \)
71 \( 1 - 250.T + 3.57e5T^{2} \)
73 \( 1 + 553.T + 3.89e5T^{2} \)
79 \( 1 - 1.12e3T + 4.93e5T^{2} \)
83 \( 1 + 75.5T + 5.71e5T^{2} \)
89 \( 1 + 568.T + 7.04e5T^{2} \)
97 \( 1 - 620.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.056883108834573218583372274527, −8.273616101759765785373881948395, −6.99458926774425652633710502074, −6.24357015707265003896878315445, −5.95610956996634242180999110595, −5.07488251495368203008866862383, −3.74254768484332021059066526721, −2.68063988524537565545363281444, −1.35359490505334858495201165311, −0.56938168459805135954434709453, 0.56938168459805135954434709453, 1.35359490505334858495201165311, 2.68063988524537565545363281444, 3.74254768484332021059066526721, 5.07488251495368203008866862383, 5.95610956996634242180999110595, 6.24357015707265003896878315445, 6.99458926774425652633710502074, 8.273616101759765785373881948395, 9.056883108834573218583372274527

Graph of the $Z$-function along the critical line