L(s) = 1 | + (−0.195 + 0.980i)2-s + (−0.555 − 0.831i)3-s + (−0.923 − 0.382i)4-s + (0.980 + 0.195i)5-s + (0.923 − 0.382i)6-s + (0.555 − 0.831i)8-s + (−0.382 + 0.923i)9-s + (−0.382 + 0.923i)10-s + (0.195 + 0.980i)12-s + (−0.382 − 0.923i)15-s + (0.707 + 0.707i)16-s + (0.831 − 0.555i)17-s + (−0.831 − 0.555i)18-s + (0.707 + 1.70i)19-s + (−0.831 − 0.555i)20-s + ⋯ |
L(s) = 1 | + (−0.195 + 0.980i)2-s + (−0.555 − 0.831i)3-s + (−0.923 − 0.382i)4-s + (0.980 + 0.195i)5-s + (0.923 − 0.382i)6-s + (0.555 − 0.831i)8-s + (−0.382 + 0.923i)9-s + (−0.382 + 0.923i)10-s + (0.195 + 0.980i)12-s + (−0.382 − 0.923i)15-s + (0.707 + 0.707i)16-s + (0.831 − 0.555i)17-s + (−0.831 − 0.555i)18-s + (0.707 + 1.70i)19-s + (−0.831 − 0.555i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9622017342\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9622017342\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.195 - 0.980i)T \) |
| 3 | \( 1 + (0.555 + 0.831i)T \) |
| 5 | \( 1 + (-0.980 - 0.195i)T \) |
| 17 | \( 1 + (-0.831 + 0.555i)T \) |
good | 7 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (1.17 + 0.785i)T + (0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + (0.216 + 0.324i)T + (-0.382 + 0.923i)T^{2} \) |
| 37 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + (-0.275 + 0.275i)T - iT^{2} \) |
| 53 | \( 1 + (-1.53 + 0.636i)T + (0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.382 - 1.92i)T + (-0.923 + 0.382i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 79 | \( 1 + (-1.08 + 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 83 | \( 1 + (-1.02 + 0.425i)T + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314101672389369706838927416399, −8.390350856161041338250674035016, −7.68122086067436058139721442229, −7.05088231854258533114013384197, −6.13884652166056105359033571546, −5.73041195860306994304021019104, −5.07800168803896162542275715179, −3.77215033442458640817958582269, −2.26571631139637503912308136098, −1.12477480230282864938890650023,
1.06021823057225012256839029309, 2.38600587660272000438653711816, 3.38796908591682794739069125785, 4.28560224975506130786063628125, 5.25006877521197267534739743200, 5.64674454682969056385305183540, 6.78953746378828222949886278085, 7.969941289255585633392346464558, 8.947078891502768467646906124393, 9.457203659753930641895342374497