L(s) = 1 | + (0.923 − 0.382i)2-s + (0.923 + 0.382i)3-s + (0.707 − 0.707i)4-s + (−0.382 + 0.923i)5-s + 6-s + (0.382 − 0.923i)8-s + (0.707 + 0.707i)9-s + i·10-s + (0.923 − 0.382i)12-s + (−0.707 + 0.707i)15-s − i·16-s + (−0.923 − 0.382i)17-s + (0.923 + 0.382i)18-s + (1 + i)19-s + (0.382 + 0.923i)20-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)2-s + (0.923 + 0.382i)3-s + (0.707 − 0.707i)4-s + (−0.382 + 0.923i)5-s + 6-s + (0.382 − 0.923i)8-s + (0.707 + 0.707i)9-s + i·10-s + (0.923 − 0.382i)12-s + (−0.707 + 0.707i)15-s − i·16-s + (−0.923 − 0.382i)17-s + (0.923 + 0.382i)18-s + (1 + i)19-s + (0.382 + 0.923i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.574304365\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.574304365\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 + 0.382i)T \) |
| 3 | \( 1 + (-0.923 - 0.382i)T \) |
| 5 | \( 1 + (0.382 - 0.923i)T \) |
| 17 | \( 1 + (0.923 + 0.382i)T \) |
good | 7 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + (0.765 + 1.84i)T + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - 0.765iT - T^{2} \) |
| 53 | \( 1 + (0.541 + 0.541i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (0.541 + 0.541i)T + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.500315614655491883752499839084, −8.550642108342979475974304857421, −7.65282060390917182045679009808, −6.95014133236166279994565148070, −6.21182772926104706700934579006, −5.03978473647593458773544801749, −4.24034353372288347153749881125, −3.46340276503039209821127577633, −2.77178331893976818226220870978, −1.86397135090828589264416988856,
1.57118634176543465745634873669, 2.62894007798636017864219017630, 3.74209048962161599954078629126, 4.24238802340066628613892124691, 5.28583988987904774224288417733, 6.06376499964163917147819070276, 7.23210762264174864704413170368, 7.57417681887513041332556155568, 8.384331686223679899187058383463, 9.115794931053844400078873542328