L(s) = 1 | + (−0.923 + 0.382i)2-s + (−0.923 − 0.382i)3-s + (0.707 − 0.707i)4-s + (0.382 − 0.923i)5-s + 6-s + (−0.382 + 0.923i)8-s + (0.707 + 0.707i)9-s + i·10-s + (−0.923 + 0.382i)12-s + (−0.707 + 0.707i)15-s − i·16-s + (0.923 + 0.382i)17-s + (−0.923 − 0.382i)18-s + (1 + i)19-s + (−0.382 − 0.923i)20-s + ⋯ |
L(s) = 1 | + (−0.923 + 0.382i)2-s + (−0.923 − 0.382i)3-s + (0.707 − 0.707i)4-s + (0.382 − 0.923i)5-s + 6-s + (−0.382 + 0.923i)8-s + (0.707 + 0.707i)9-s + i·10-s + (−0.923 + 0.382i)12-s + (−0.707 + 0.707i)15-s − i·16-s + (0.923 + 0.382i)17-s + (−0.923 − 0.382i)18-s + (1 + i)19-s + (−0.382 − 0.923i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6367297579\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6367297579\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 - 0.382i)T \) |
| 3 | \( 1 + (0.923 + 0.382i)T \) |
| 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 + (-0.923 - 0.382i)T \) |
good | 7 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + (-0.765 - 1.84i)T + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + 0.765iT - T^{2} \) |
| 53 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.348754642230605880773487958138, −8.551979007393516308899067729346, −7.65081719504778226589074607041, −7.20801484440224264744960130394, −6.10540294763639099556049630134, −5.45489412018738535369433195175, −5.07596425788274392012259521260, −3.48412772011012033563231061583, −1.74464045302598124404421968050, −1.14573485593915830108450432637,
0.879669988089516664534386409687, 2.42625035424587306405309619557, 3.25373429057987455377137517868, 4.35546264552307470296462566892, 5.52712174888817175213784377428, 6.29106240702754268233435584379, 7.09235225180451774114402228841, 7.55761827609348539796696687378, 8.809297545374420374669421557419, 9.600221091806931117569441366892