L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 + 0.707i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + 1.00i·10-s + (0.707 + 0.707i)12-s − 1.00i·15-s − 1.00·16-s + (0.707 − 0.707i)17-s + (−0.707 − 0.707i)18-s + 2·19-s + (0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 + 0.707i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + 1.00i·10-s + (0.707 + 0.707i)12-s − 1.00i·15-s − 1.00·16-s + (0.707 − 0.707i)17-s + (−0.707 − 0.707i)18-s + 2·19-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.192924992\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.192924992\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - 2T + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + (-1 - i)T + iT^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (1 + i)T + iT^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (1 - i)T - iT^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.718258863889934904931251155970, −8.692022249370655907763812741639, −7.39302768188221662452498232728, −6.79447248399121979990047683445, −5.74591642980833778795970160965, −5.15727533963024799891754739554, −4.28025893462848953192857959553, −3.40816352614912614945183492434, −2.84794460732860150303929464391, −0.971369189091242473228766705250,
1.14680795284069934943350413118, 2.78680175636179706835311034909, 3.90570255325368090170737682957, 4.73540172957647924361311337847, 5.57042967121399380550826617633, 6.01940747261519082479683284439, 7.25546641733798044346397498509, 7.56109370740969099427396206573, 8.268160146940717841540295317317, 9.124645424878434079975137279439