L(s) = 1 | + (0.707 + 0.707i)3-s + (0.707 + 0.707i)5-s + (−1.24 + 1.24i)7-s + 1.00i·9-s + (2.10 − 2.10i)11-s + 3.64·13-s + 1.00i·15-s + (3.74 + 1.71i)17-s − 8.09i·19-s − 1.75·21-s + (5.38 − 5.38i)23-s + 1.00i·25-s + (−0.707 + 0.707i)27-s + (−6.04 − 6.04i)29-s + (3.84 + 3.84i)31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.316 + 0.316i)5-s + (−0.469 + 0.469i)7-s + 0.333i·9-s + (0.635 − 0.635i)11-s + 1.01·13-s + 0.258i·15-s + (0.909 + 0.416i)17-s − 1.85i·19-s − 0.383·21-s + (1.12 − 1.12i)23-s + 0.200i·25-s + (−0.136 + 0.136i)27-s + (−1.12 − 1.12i)29-s + (0.690 + 0.690i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 - 0.460i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.887 - 0.460i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.340235026\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.340235026\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 + (-3.74 - 1.71i)T \) |
good | 7 | \( 1 + (1.24 - 1.24i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.10 + 2.10i)T - 11iT^{2} \) |
| 13 | \( 1 - 3.64T + 13T^{2} \) |
| 19 | \( 1 + 8.09iT - 19T^{2} \) |
| 23 | \( 1 + (-5.38 + 5.38i)T - 23iT^{2} \) |
| 29 | \( 1 + (6.04 + 6.04i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.84 - 3.84i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.27 - 2.27i)T + 37iT^{2} \) |
| 41 | \( 1 + (6.86 - 6.86i)T - 41iT^{2} \) |
| 43 | \( 1 - 1.46iT - 43T^{2} \) |
| 47 | \( 1 - 7.37T + 47T^{2} \) |
| 53 | \( 1 + 0.895iT - 53T^{2} \) |
| 59 | \( 1 - 10.7iT - 59T^{2} \) |
| 61 | \( 1 + (1.89 - 1.89i)T - 61iT^{2} \) |
| 67 | \( 1 + 0.472T + 67T^{2} \) |
| 71 | \( 1 + (-9.42 - 9.42i)T + 71iT^{2} \) |
| 73 | \( 1 + (2.88 + 2.88i)T + 73iT^{2} \) |
| 79 | \( 1 + (-7.18 + 7.18i)T - 79iT^{2} \) |
| 83 | \( 1 + 2.60iT - 83T^{2} \) |
| 89 | \( 1 - 8.81T + 89T^{2} \) |
| 97 | \( 1 + (4.63 + 4.63i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.991921129833209404721522259092, −8.769835214321513805213935162536, −7.73609830541108986343249246460, −6.63521390771310791314989233906, −6.17241120460042060659941903253, −5.20150868289626596338169438778, −4.18869132490846046244704971107, −3.20550390948345959311164460871, −2.61207049086570413903872099966, −1.06325069845614026375663822178,
1.09120661468607169593702558964, 1.89772006898133662175698825187, 3.48577413376624588033443180164, 3.76472131529202672024345511172, 5.20500317167007371515346138820, 5.93601799898215373268412232096, 6.83227566649054197118768743925, 7.50160235243523165874218513077, 8.263313755443188315329635468652, 9.193351432043721790825581686487