L(s) = 1 | + (0.707 + 0.707i)3-s + (0.707 + 0.707i)5-s + (−2.33 + 2.33i)7-s + 1.00i·9-s + (0.445 − 0.445i)11-s + 5.99·13-s + 1.00i·15-s + (−2.17 + 3.50i)17-s + 0.236i·19-s − 3.30·21-s + (3.45 − 3.45i)23-s + 1.00i·25-s + (−0.707 + 0.707i)27-s + (6.37 + 6.37i)29-s + (−3.61 − 3.61i)31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.316 + 0.316i)5-s + (−0.883 + 0.883i)7-s + 0.333i·9-s + (0.134 − 0.134i)11-s + 1.66·13-s + 0.258i·15-s + (−0.526 + 0.850i)17-s + 0.0543i·19-s − 0.721·21-s + (0.720 − 0.720i)23-s + 0.200i·25-s + (−0.136 + 0.136i)27-s + (1.18 + 1.18i)29-s + (−0.648 − 0.648i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.346 - 0.938i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.346 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.850464398\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.850464398\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 + (2.17 - 3.50i)T \) |
good | 7 | \( 1 + (2.33 - 2.33i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.445 + 0.445i)T - 11iT^{2} \) |
| 13 | \( 1 - 5.99T + 13T^{2} \) |
| 19 | \( 1 - 0.236iT - 19T^{2} \) |
| 23 | \( 1 + (-3.45 + 3.45i)T - 23iT^{2} \) |
| 29 | \( 1 + (-6.37 - 6.37i)T + 29iT^{2} \) |
| 31 | \( 1 + (3.61 + 3.61i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.31 + 1.31i)T + 37iT^{2} \) |
| 41 | \( 1 + (2.38 - 2.38i)T - 41iT^{2} \) |
| 43 | \( 1 - 6.86iT - 43T^{2} \) |
| 47 | \( 1 + 12.0T + 47T^{2} \) |
| 53 | \( 1 - 13.2iT - 53T^{2} \) |
| 59 | \( 1 + 11.7iT - 59T^{2} \) |
| 61 | \( 1 + (6.16 - 6.16i)T - 61iT^{2} \) |
| 67 | \( 1 - 10.6T + 67T^{2} \) |
| 71 | \( 1 + (-1.03 - 1.03i)T + 71iT^{2} \) |
| 73 | \( 1 + (3.16 + 3.16i)T + 73iT^{2} \) |
| 79 | \( 1 + (4.51 - 4.51i)T - 79iT^{2} \) |
| 83 | \( 1 - 12.0iT - 83T^{2} \) |
| 89 | \( 1 + 15.6T + 89T^{2} \) |
| 97 | \( 1 + (-4.43 - 4.43i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.256265297007867898652825177331, −8.693055439228179026585817999848, −8.146287513169747033594176757294, −6.71961172018215923255008608664, −6.31306342298338448243307319868, −5.52386960348188572773243008555, −4.38178754540537986472156627000, −3.38576185917568058268939718814, −2.79952320441087899272839532230, −1.52008323387771449483111838653,
0.64345195332176021674983267754, 1.73852448052166247332373251151, 3.11262105114974685228413551009, 3.74081308049229583257174098624, 4.79146971727410976580793846802, 5.89791522854840580928401160812, 6.71126228263038018878175011469, 7.13221776022949087520641004260, 8.276790704939025616730146716972, 8.823156455684461089783255481812