L(s) = 1 | + (0.5 + 0.866i)3-s + (1.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s + 1.73i·21-s − 25-s − 0.999·27-s − 1.73i·31-s + (0.5 − 0.866i)43-s + (1 + 1.73i)49-s + (−0.5 + 0.866i)61-s + (−1.49 + 0.866i)63-s + (−1.5 + 0.866i)67-s − 1.73i·73-s + (−0.5 − 0.866i)75-s + 79-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)3-s + (1.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s + 1.73i·21-s − 25-s − 0.999·27-s − 1.73i·31-s + (0.5 − 0.866i)43-s + (1 + 1.73i)49-s + (−0.5 + 0.866i)61-s + (−1.49 + 0.866i)63-s + (−1.5 + 0.866i)67-s − 1.73i·73-s + (−0.5 − 0.866i)75-s + 79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.552350892\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.552350892\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + 1.73iT - T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + 1.73iT - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.284804723633816577482141140160, −8.844173110394472781463167415039, −7.948950295788497112579356918428, −7.60706026699309171868249270364, −6.03454453587760628266545405999, −5.39871823781162242755620560095, −4.59673344106492540293986117982, −3.87865735450143787661130835212, −2.60803587655338948401594424580, −1.85710015148427093512776057106,
1.19736238697406130626784494067, 1.99761782792138409732538620945, 3.24547977871478479452233466290, 4.24421059907432348318115350246, 5.10402976246783382971351336778, 6.13655952796112925254041787196, 7.07046159732048141288919066605, 7.65878522778450404790269942355, 8.230181683718558244925416899976, 8.919463747275911891923516760064