L(s) = 1 | − i·2-s + (−0.707 − 0.707i)7-s − i·8-s − i·9-s + (1.41 + 1.41i)11-s + (−0.707 + 0.707i)14-s − 16-s − 18-s + (1.41 − 1.41i)22-s + (−0.707 − 0.707i)23-s − i·25-s + (0.707 − 0.707i)29-s + (−0.707 + 0.707i)37-s + i·43-s + (−0.707 + 0.707i)46-s + ⋯ |
L(s) = 1 | − i·2-s + (−0.707 − 0.707i)7-s − i·8-s − i·9-s + (1.41 + 1.41i)11-s + (−0.707 + 0.707i)14-s − 16-s − 18-s + (1.41 − 1.41i)22-s + (−0.707 − 0.707i)23-s − i·25-s + (0.707 − 0.707i)29-s + (−0.707 + 0.707i)37-s + i·43-s + (−0.707 + 0.707i)46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.242565390\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.242565390\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + iT - T^{2} \) |
| 3 | \( 1 + iT^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.517214914206953688909902389295, −8.498316489211341332460125601865, −7.26936881785176742011699450100, −6.55915726290957865652173759274, −6.33624267786232214147435302775, −4.45884273032456029660855638658, −4.02526410295277897126651948742, −3.16631162856260041484953541636, −2.05096787282279998136053187784, −0.930930441476495510441877065770,
1.74250258170730366775253582787, 2.93147367209297020361482554001, 3.86090685877460714262759605142, 5.26505731556590713485426035408, 5.71894379287573250430348992278, 6.47226960896088648324614913100, 7.13279120410163787868057816342, 8.029572325652036146221174092132, 8.766372761664506298005663737307, 9.194656989492731624683443480906