L(s) = 1 | + 1.61i·2-s + (−1.14 − 1.14i)3-s − 1.61·4-s + (−0.437 − 0.437i)5-s + (1.85 − 1.85i)6-s + (−0.707 + 0.707i)7-s − i·8-s + 1.61i·9-s + (0.707 − 0.707i)10-s + (1.85 + 1.85i)12-s + (−1.14 − 1.14i)14-s + i·15-s − 2.61·18-s + (0.707 + 0.707i)20-s + 1.61·21-s + ⋯ |
L(s) = 1 | + 1.61i·2-s + (−1.14 − 1.14i)3-s − 1.61·4-s + (−0.437 − 0.437i)5-s + (1.85 − 1.85i)6-s + (−0.707 + 0.707i)7-s − i·8-s + 1.61i·9-s + (0.707 − 0.707i)10-s + (1.85 + 1.85i)12-s + (−1.14 − 1.14i)14-s + i·15-s − 2.61·18-s + (0.707 + 0.707i)20-s + 1.61·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4520894738\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4520894738\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 1.61iT - T^{2} \) |
| 3 | \( 1 + (1.14 + 1.14i)T + iT^{2} \) |
| 5 | \( 1 + (0.437 + 0.437i)T + iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 + (-0.437 - 0.437i)T + iT^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-1.14 + 1.14i)T - iT^{2} \) |
| 43 | \( 1 + 1.61iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 0.618iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-1.14 + 1.14i)T - iT^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1.14 - 1.14i)T + iT^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.437 + 0.437i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.894742280715298548245562019987, −8.305804088458522932529580275868, −7.54651347142376813457225848679, −6.78887927288040637699320698862, −6.40467960669621724530618150879, −5.53194969323156009347147069514, −5.16715527446885008738274431463, −3.97180508741669060209206749229, −2.26096067137870408186824678075, −0.49522163476008788606799979424,
0.970006550425115842429392189670, 2.74540193565417070615994590493, 3.58166474914910206789967502174, 4.18447214057775579102974088405, 4.85523692782904740676600781328, 5.97831751284781130858042607953, 6.78109129215182927044422785852, 7.87558562972693190929281606011, 9.248581156060696811196213749652, 9.649371365820437167024254511357