L(s) = 1 | − 0.347i·2-s + 0.879·4-s + (−0.707 + 0.707i)7-s − 0.652i·8-s + i·9-s + (−0.707 + 0.707i)11-s + (0.245 + 0.245i)14-s + 0.652·16-s + 0.347·18-s + (0.245 + 0.245i)22-s + (1.08 − 1.08i)23-s + i·25-s + (−0.621 + 0.621i)28-s + (1.32 + 1.32i)29-s − 0.879i·32-s + ⋯ |
L(s) = 1 | − 0.347i·2-s + 0.879·4-s + (−0.707 + 0.707i)7-s − 0.652i·8-s + i·9-s + (−0.707 + 0.707i)11-s + (0.245 + 0.245i)14-s + 0.652·16-s + 0.347·18-s + (0.245 + 0.245i)22-s + (1.08 − 1.08i)23-s + i·25-s + (−0.621 + 0.621i)28-s + (1.32 + 1.32i)29-s − 0.879i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.479i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.479i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.295979485\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295979485\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 0.347iT - T^{2} \) |
| 3 | \( 1 - iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-1.08 + 1.08i)T - iT^{2} \) |
| 29 | \( 1 + (-1.32 - 1.32i)T + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-0.245 - 0.245i)T + iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 - 1.53iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.53iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + (1.32 + 1.32i)T + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (-0.245 + 0.245i)T - iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.528434024640815106977260466151, −8.630016278366689486468468609901, −7.77521283073647779927805132955, −7.00163704151670213406207053966, −6.37867743110597634122932799928, −5.33753941590993557999752696618, −4.66175836031676004533278589547, −3.12112835386395640415769366253, −2.67756901666978746703545051226, −1.63191556868238318205774277902,
0.953137792944884991110089363722, 2.62619718943693783697571415978, 3.28734201889201665703930898541, 4.30810382600953414393692799904, 5.61543788362505969890568840916, 6.18213484376763254227250842985, 6.91157955277770726027438314790, 7.53965677138123453679676540375, 8.389943985406621185303005594093, 9.237424660354513461839620731050