L(s) = 1 | + i·2-s + (0.707 − 0.707i)7-s + i·8-s + i·9-s + (−1.41 + 1.41i)11-s + (0.707 + 0.707i)14-s − 16-s − 18-s + (−1.41 − 1.41i)22-s + (0.707 − 0.707i)23-s + i·25-s + (−0.707 − 0.707i)29-s + (0.707 + 0.707i)37-s − i·43-s + (0.707 + 0.707i)46-s + ⋯ |
L(s) = 1 | + i·2-s + (0.707 − 0.707i)7-s + i·8-s + i·9-s + (−1.41 + 1.41i)11-s + (0.707 + 0.707i)14-s − 16-s − 18-s + (−1.41 − 1.41i)22-s + (0.707 − 0.707i)23-s + i·25-s + (−0.707 − 0.707i)29-s + (0.707 + 0.707i)37-s − i·43-s + (0.707 + 0.707i)46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.247480126\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.247480126\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 3 | \( 1 - iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.576445465832761151403738625300, −8.395198526202575403389668764255, −7.80249630130476733945115327099, −7.39214467620720805035022254317, −6.74889692876833320031348312031, −5.44291887930623831464983970255, −5.05368005490257214261260137528, −4.29162603129834203771891992828, −2.62427933590085173686142886029, −1.86819339684400054043210282572,
0.890365777496651126933968140306, 2.23130068785396647242236317922, 3.01990719995001125974855017657, 3.74814502337373902439604130866, 5.02750399244484743580869646376, 5.79845708789402628857306386107, 6.59192676217316787645099105761, 7.68380396139913703914153000182, 8.404082016578424704872088555805, 9.194710291321763381138905314214