L(s) = 1 | + 0.618i·2-s + (−0.437 + 0.437i)3-s + 0.618·4-s + (−1.14 + 1.14i)5-s + (−0.270 − 0.270i)6-s + (0.707 + 0.707i)7-s + i·8-s + 0.618i·9-s + (−0.707 − 0.707i)10-s + (−0.270 + 0.270i)12-s + (−0.437 + 0.437i)14-s − i·15-s − 0.381·18-s + (−0.707 + 0.707i)20-s − 0.618·21-s + ⋯ |
L(s) = 1 | + 0.618i·2-s + (−0.437 + 0.437i)3-s + 0.618·4-s + (−1.14 + 1.14i)5-s + (−0.270 − 0.270i)6-s + (0.707 + 0.707i)7-s + i·8-s + 0.618i·9-s + (−0.707 − 0.707i)10-s + (−0.270 + 0.270i)12-s + (−0.437 + 0.437i)14-s − i·15-s − 0.381·18-s + (−0.707 + 0.707i)20-s − 0.618·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.016945019\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.016945019\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 0.618iT - T^{2} \) |
| 3 | \( 1 + (0.437 - 0.437i)T - iT^{2} \) |
| 5 | \( 1 + (1.14 - 1.14i)T - iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + (-1.14 + 1.14i)T - iT^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (-0.437 - 0.437i)T + iT^{2} \) |
| 43 | \( 1 + 0.618iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.61iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-0.437 - 0.437i)T + iT^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + (-0.437 + 0.437i)T - iT^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1.14 - 1.14i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.877007402949519265775017730382, −8.545114784425487763279296678516, −7.931559916201304835410633343117, −7.46562350377468995553287181344, −6.58436168726242501591251008036, −5.84847987924421913985047681886, −5.00540138166997621558072986210, −4.13417315133049824293595728483, −2.93134608895751081087645019986, −2.13661247610745685929725593848,
0.815682346601377710345206743160, 1.51307735651438110930992329905, 3.09724721074112509918268878020, 4.04396363523706368179835743398, 4.65523249735584340305458864214, 5.77243748381607616869396642425, 6.78969479999298516687243336678, 7.40370248833548700228464660088, 8.108578417624633101283518202098, 8.894437770606159126199391384817