L(s) = 1 | + (−1.32 + 1.32i)2-s − 2.53i·4-s + (−0.382 − 0.923i)7-s + (2.03 + 2.03i)8-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s + (1.73 + 0.719i)14-s − 2.87·16-s − 1.87·18-s + (−0.719 + 1.73i)22-s + (0.320 − 0.132i)23-s + (−0.707 − 0.707i)25-s + (−2.33 + 0.968i)28-s + (0.586 − 1.41i)29-s + (1.79 − 1.79i)32-s + ⋯ |
L(s) = 1 | + (−1.32 + 1.32i)2-s − 2.53i·4-s + (−0.382 − 0.923i)7-s + (2.03 + 2.03i)8-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s + (1.73 + 0.719i)14-s − 2.87·16-s − 1.87·18-s + (−0.719 + 1.73i)22-s + (0.320 − 0.132i)23-s + (−0.707 − 0.707i)25-s + (−2.33 + 0.968i)28-s + (0.586 − 1.41i)29-s + (1.79 − 1.79i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5907810550\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5907810550\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.382 + 0.923i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (1.32 - 1.32i)T - iT^{2} \) |
| 3 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.923 + 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.320 + 0.132i)T + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.586 + 1.41i)T + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (1.73 + 0.719i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.245 - 0.245i)T + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.245 + 0.245i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (-1.41 - 0.586i)T + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-1.73 + 0.719i)T + (0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.365705217760419819543620475594, −8.395643790409178577969740809078, −7.87406417571929670327279084982, −7.04255074982890966835119319535, −6.61636769309801718460513290551, −5.78924019869823806696488860227, −4.75245207070011123284097132614, −3.85282703268918039514955837117, −1.97921674463162972425889453184, −0.78270009970735484132637436208,
1.24146955598028235168051050265, 2.09725347212086789237387670850, 3.29103461228031498622570831054, 3.80026800149895616372664764763, 5.09040054372738839943137262983, 6.55026360339042355733429261078, 7.06881197147832145187184071819, 8.095545901946871630173927902326, 8.989794835954454599463867761689, 9.235045371158740712158712389540