L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.382 + 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−1.84 − 0.765i)11-s + (0.923 − 0.382i)14-s + 1.00·16-s − 1.00·18-s + (0.765 + 1.84i)22-s + (−0.923 − 0.382i)23-s + (−0.707 + 0.707i)25-s + (−0.382 − 0.923i)29-s + (−0.923 + 0.382i)37-s + (−0.707 + 0.707i)43-s + (0.382 + 0.923i)46-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.382 + 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−1.84 − 0.765i)11-s + (0.923 − 0.382i)14-s + 1.00·16-s − 1.00·18-s + (0.765 + 1.84i)22-s + (−0.923 − 0.382i)23-s + (−0.707 + 0.707i)25-s + (−0.382 − 0.923i)29-s + (−0.923 + 0.382i)37-s + (−0.707 + 0.707i)43-s + (0.382 + 0.923i)46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.730 - 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.730 - 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1130444433\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1130444433\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.382 - 0.923i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 3 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (1.84 + 0.765i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (0.923 + 0.382i)T + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.382 + 0.923i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (0.923 - 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 + (0.923 - 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.923 - 0.382i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.964367324665914290269330729965, −8.303745224401215828387510733895, −7.58920050227390773375753379092, −6.27586789103013294885941987729, −5.76296550009323824568937104300, −4.92562927172573978194030309624, −3.48480825052303940847392261706, −2.68948825320039007210869759856, −1.76306522237062423065164657053, −0.094684850389200964215648398358,
1.90568752594995315434336159958, 3.15734174510113795939262051237, 4.18268347937274210425010588851, 5.06387750899539912592618922430, 6.07360504695233137557957521897, 7.10139858447623713977789111354, 7.54943002111047537994533604963, 7.939699501997660525027045541593, 8.906978854493052913390362856015, 10.03614624998427500979083552879