L(s) = 1 | + (1.08 + 1.08i)2-s + 1.34i·4-s + (−0.382 + 0.923i)7-s + (−0.376 + 0.376i)8-s + (0.707 − 0.707i)9-s + (0.923 + 0.382i)11-s + (−1.41 + 0.586i)14-s + 0.532·16-s + 1.53·18-s + (0.586 + 1.41i)22-s + (−1.73 − 0.719i)23-s + (−0.707 + 0.707i)25-s + (−1.24 − 0.515i)28-s + (0.132 + 0.320i)29-s + (0.952 + 0.952i)32-s + ⋯ |
L(s) = 1 | + (1.08 + 1.08i)2-s + 1.34i·4-s + (−0.382 + 0.923i)7-s + (−0.376 + 0.376i)8-s + (0.707 − 0.707i)9-s + (0.923 + 0.382i)11-s + (−1.41 + 0.586i)14-s + 0.532·16-s + 1.53·18-s + (0.586 + 1.41i)22-s + (−1.73 − 0.719i)23-s + (−0.707 + 0.707i)25-s + (−1.24 − 0.515i)28-s + (0.132 + 0.320i)29-s + (0.952 + 0.952i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.186 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.186 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.147871118\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.147871118\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.382 - 0.923i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-1.08 - 1.08i)T + iT^{2} \) |
| 3 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.923 - 0.382i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (1.73 + 0.719i)T + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.132 - 0.320i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-1.41 + 0.586i)T + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (1.32 - 1.32i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.32 + 1.32i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (-0.320 + 0.132i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (1.41 + 0.586i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.711792940224005843079172193785, −8.548403147174749513819566666753, −7.78869733520262049206951593076, −6.85532622346666756362262761470, −6.31342460937007466366435979644, −5.80132597399867350899154273996, −4.71944426559374516759203525251, −4.03834692142669286273972239661, −3.24674028877240444764833526414, −1.77696260423594928211764806090,
1.31268871220544732284513677528, 2.25598710434562917524985921055, 3.49117669867555144562170907563, 4.07262355933729387056809207943, 4.65359975590132740585492031177, 5.79752640319132108985246029514, 6.50746724980707729105463670923, 7.58213336200464424627057811062, 8.210579333197365654096125159427, 9.638578260205761644020545500505